Unknown

Dataset Information

0

Highly Thermally Conductive Polymer/Graphene Composites with Rapid Room-Temperature Self-Healing Capacity.


ABSTRACT: Composites that can rapidly self-healing their structure and function at room temperature have broad application prospects. However, in view of the complexity of composite structure and composition, its self-heal is facing challenges. In this article, supramolecular effect is proposed to repair the multistage structure, mechanical and thermal properties of composite materials. A stiff and tough supramolecular frameworks of 2-[[(butylamino)carbonyl]oxy]ethyl ester (PBA)-polydimethylsiloxane (PDMS) were established using a chain extender with double amide bonds in a side chain to extend prepolymers through copolymerization. Then, by introducing the copolymer into a folded graphene film (FGf), a highly thermally conductive composite of PBA-PDMS/FGf with self-healing capacity was fabricated. The ratio of crosslinking and hydrogen bonding was optimized to ensure that PBA-PDMS could completely self-heal at room temperature in 10 min. Additionally, PBA-PDMS/FGf exhibits a high tensile strength of 2.23 ± 0.15 MPa at break and high thermal conductivity of 13 ± 0.2 W m-1 K-1; of which the self-healing efficiencies were 100% and 98.65% at room temperature for tensile strength and thermal conductivity, respectively. The excellent self-healing performance comes from the efficient supramolecular interaction between polymer molecules, as well as polymer molecule and graphene. This kind of thermal conductive self-healing composite has important application prospects in the heat dissipation field of next generation electronic devices in the future.

SUBMITTER: Yu H 

PROVIDER: S-EPMC9200911 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7865638 | biostudies-literature
| S-EPMC8512851 | biostudies-literature
| S-EPMC8623857 | biostudies-literature
| S-EPMC3983941 | biostudies-literature
| S-EPMC3913918 | biostudies-literature
| S-EPMC6303394 | biostudies-literature
| S-EPMC9030686 | biostudies-literature