Project description:Movement time (MT) is one of the most important variables influencing the way we control our movements. A few previous studies have generally found that MT reduces with reaction time testing during exercise. However, limited evidence exists concerning change in MT following an acute bout of exercise. Our purpose was to investigate the effect of an acute bout of aerobic exercise on movement time as assessed by a Fitts' Law task. We also sought to determine if exercise would further lower MT during the more difficult task conditions compared with rest. Nineteen (12 male, 7 female) volunteers (19-28 yrs) completed a computerized paired serial pointing task to measure movement time before and after rest (R) and an acute bout of moderate aerobic exercise (E) using a within subjects crossover design. Comparisons between exercise and rest conditions were made to determine if there were differences in movement time. Exercise significantly reduced MT compared with rest. Movement time was reduced by an average of 208 ms following exercise compared with 108 ms following rest. Exercise did not further lower MT during the more difficult task conditions. These results suggest that an acute bout of aerobic exercise reduces movement time which is an important component of motor control. Further studies are needed to determine the duration of the effect as well as the optimum duration and intensity of exercise.
Project description:Background: Motor learning is impaired in Parkinson's disease (PD), with patients demonstrating deficits in skill acquisition (online learning) and consolidation (offline learning) compared to healthy adults of similar age. Recent studies in young adults suggest that single bouts of aerobic exercise (AEX), performed in close temporal proximity to practicing a new motor task, may facilitate motor skill learning. Thus, we aimed at investigating the effects of a single bout of aerobic cycling on online and offline learning in PD patients. Methods: 17 PD patients (Hoehn and Yahr 1 - 2.5, age: 64.4 ± 6.2) participated in this crossover study. Immediately prior to practicing a novel balance task, patients either performed 30 min of (i) moderate intensity (60-70% VO2max) aerobic cycling, or (ii) seated rest (order counterbalanced). The task required patients to stabilize a balance platform (stabilometer) in a horizontal position for 30 s. For each experimental condition, patients performed 15 acquisition trials, followed by a retention test 24 h later. We calculated time in balance (platform within ± 5° from horizontal) for each trial, and analyzed within- and between-subjects differences in skill acquisition (online learning) and skill retention (offline learning) using mixed repeated-measures ANOVA. Results: We found that the exercise bout had no effect on performance level or online gains during acquisition, despite affecting the time course of skill improvements (larger initial and reduced late skill gains). Aerobic cycling significantly improved offline learning, as reflected by larger 24-h skill retention compared to the rest condition. Conclusion: Our results suggest that a single bout of moderate-intensity AEX is effective in improving motor skill consolidation in PD patients. Thus, acute exercise may represent an effective strategy to enhance motor memory formation in this population. More work is necessary to understand the underlying mechanisms, the optimal scheduling of exercise, and the applicability to other motor tasks. Further, the potential for patients in later disease stages need to be investigated. The study was a priori registered at ClinicalTrials.gov (NCT03245216).
Project description:The purpose of the study was to compare sex adaptations in hypertrophy, strength and contractile properties of upper and lower-body muscles induced by resistance training (RT). Eighteen RT untrained male (MG) and female (FG) students (aged 24.1 ± 1.7 years, height: 1.75 ± 0.08 m, weight: 70.4 ± 12.3 kg) undervent 7 weeks of biceps curl and squat training (2 days/week, 60-70% repetition maximum, 3-4 sets, 120 s rest intervals, reps until muscular failure). At baseline and final measurement, thickness and cross-section area, one-repetition maximum and tensiomyography parameters (contraction time - Tc and radial displacement - Dm) of elbow flexors (biceps brachii) and knee extensors (4 quadriceps muscles) were evaluated. Although MG tends to display greater absolute strength gains for upper- (p = 0.055) and lower-body (p = 0.098), for relative changes ANCOVA revealed no sex-specific differences for either of the tested variables. Significant hypertrophy was observed for all tested muscles, except for vastus intermedius in FG (p = 0.076). The Dm significantly decreased for biceps brachii (MG by 12%, p < 0.01 and FG by 13.1%, p < 0.01) and rectus femoris (MG by19.2%, p < 0.01 and FG by 12.3%, p < 0.05), while Tc values remain unchanged. These results indicate that initial morphological, functional and contractile alterations following RT are similar for males and females, and that there are no specific sex adaptations either for the upper- or lower-body muscles. The study was registered with ClinicalTrials.gov (NCT04845295).
Project description:Introduction/purposeA reduction in nonexercise physical activity (NEPA) after exercise may reduce the effectiveness of exercise interventions on weight loss in adults with overweight or obesity. Aerobic exercise (AEx) and resistance exercise (REx) may have different effects on NEPA. The purpose of this secondary analysis was to examine the effect of a single bout of AEx or REx on NEPA and sedentary behavior in inactive adults with overweight or obesity.MethodsAdults with overweight or obesity (n = 24; 50% male; age, 34.5 ± 1.5 yr; body mass index, 28.5 ± 0.9 kg·m-2) not meeting current physical activity guidelines completed a single 45-min bout of AEx, REx, or a sedentary control on different days in random order. After each condition, participants' NEPA was recorded for 84 h by accelerometer. Time spent sedentary and in light, moderate, and vigorous physical activity; steps; metabolic equivalent of task (MET)-hours; and sit-to-stand transitions were calculated using activity count data.ResultsNo differences were observed in the percent of waking time spent sedentary and in light, moderate, and vigorous activity between conditions (P > 0.05). No differences were observed in steps, MET-hours, or sit-to-stand transitions between conditions (P > 0.05). NEPA responses were variable among individuals, with approximately half of participants reducing and half increasing NEPA over the 84 h after each exercise condition.ConclusionNEPA was not reduced after an acute bout of AEx or REx in a sample of inactive adults with overweight or obesity.
Project description:IntroductionCardiorespiratory exercise has emerged as a promising candidate to modify disease progression in Huntington's disease (HD). In animal models, exercise has been found to alter biomarkers of neuroplasticity and delay evidence of disease, and some interventions-including exercise-have shown benefits in human HD patients. In healthy human populations, increasing evidence suggests that even a single bout of exercise can improve motor learning. In this pilot study, we investigated the effect of a single bout of moderate intensity aerobic exercise on motor skill learning in presymptomatic and early manifest HD patients.MethodsParticipants were allocated to either an exercise (n = 10) or control (n = 10) group. They performed either 20 min of moderate intensity cycling or rest before practicing a novel motor task, the sequential visual isometric pinch force task (SVIPT). After 1 week, the retention of the SVIPT was measured in both groups.ResultsWe found that the exercise group performed significantly better during initial task acquisition. There were no significant differences in offline memory consolidation between groups, but total skill gain across both acquisition and retention sessions was greater in the group who exercised. The better performance of the exercise group was driven by improvements in accuracy, rather than speed.DiscussionWe have shown that a single bout of moderate intensity aerobic exercise can facilitate motor skill learning in people with HD gene-expansion. More research is needed to investigate the underlying neural mechanisms and to further explore the potential for neurocognitive and functional benefits of exercise for people with HD.
Project description:The corticospinal pathway is considered the primary conduit for voluntary motor control in humans. The efficacy of the corticospinal pathway to relay neural signals from higher brain areas to the locomotor muscle, i.e., corticospinal excitability, is subject to alterations during exercise. While the integrity of this motor pathway has historically been examined during single-joint contractions, a small number of investigations have recently focused on whole body exercise, such as cycling or rowing. Although differences in methodologies employed between these studies complicate the interpretation of the existing literature, it appears that the net excitability of the corticospinal pathway remains unaltered during fatiguing whole body exercise. Importantly, this lack of an apparent effect does not designate the absence of change, but a counterbalance of excitatory and inhibitory influences on the two components of the corticospinal pathway, namely the motor cortex and the spinal motoneurons. Specific emphasis is put on group III/IV afferent feedback from locomotor muscle which has been suggested to play a significant role in mediating these changes. Overall, this review aims at summarizing our limited understanding of how fatiguing whole body exercise influences the corticospinal pathway.
Project description:Individuals with spinal cord injury (SCI) may experience cardiovascular, musculoskeletal and organ function dysregulation. Sequelae include reduced catecholamine secretion and attenuated immune responses which may impact exercise-induced leukocytosis. The purpose of this study was to characterize major leukocyte subtypes following 30 minutes of acute, submaximal aerobic exercise, in line with updated international SCI exercise guidelines for adults. It was hypothesized that exercise would increase major leukocyte subtypes when compared to fasted baseline. Eight participants with SCI (incomplete n = 6; complete n = 2) completed a 30-minute bout of aerobic exercise on an arm cycle ergometer at 60% of their peak power output followed by 90 minutes of recovery, or a 2-hour seated control condition, in a randomized crossover design, separated by 7-14 days. Blood samples were taken at baseline, post exercise, and 90 minutes after exercise (with time matched control). Leukocyte subtypes were analyzed via flow cytometry and plasma catecholamines by ELISA. Several leukocytes increased from pre- to post-exercise (time X condition interaction; all P < 0.05; mean ± SD), including CD3+ Lymphocytes (19 ± 16%), CD4+ T helper (16 ± 13%), CD8+ T cytotoxic (24 ± 23%), CD3+/CD56+ natural killer T (31 ± 34%), and CD3-/CD56+ natural killer (63 ± 82%). CD16+/CD14dim monocytes decreased by 27 ± 38% following exercise to 90 minutes post-exercise. No changes were observed for catecholamines for either condition. Thirty minutes of acute submaximal aerobic exercise sufficiently increased most lymphocyte subsets with effector functions, while leading to decreased proinflammatory monocytes during the recovery phase. This exercise duration and intensity appear to be an appropriate option for modulating circulating immune cells in individuals with SCI.
Project description:BACKGROUND:Obesity causes frailty in older adults; however, weight loss might accelerate age-related loss of muscle and bone mass and resultant sarcopenia and osteopenia. METHODS:In this clinical trial involving 160 obese older adults, we evaluated the effectiveness of several exercise modes in reversing frailty and preventing reduction in muscle and bone mass induced by weight loss. Participants were randomly assigned to a weight-management program plus one of three exercise programs - aerobic training, resistance training, or combined aerobic and resistance training - or to a control group (no weight-management or exercise program). The primary outcome was the change in Physical Performance Test score from baseline to 6 months (scores range from 0 to 36 points; higher scores indicate better performance). Secondary outcomes included changes in other frailty measures, body composition, bone mineral density, and physical functions. RESULTS:A total of 141 participants completed the study. The Physical Performance Test score increased more in the combination group than in the aerobic and resistance groups (27.9 to 33.4 points [21% increase] vs. 29.3 to 33.2 points [14% increase] and 28.8 to 32.7 points [14% increase], respectively; P=0.01 and P=0.02 after Bonferroni correction); the scores increased more in all exercise groups than in the control group (P<0.001 for between-group comparisons). Peak oxygen consumption (milliliters per kilogram of body weight per minute) increased more in the combination and aerobic groups (17.2 to 20.3 [17% increase] and 17.6 to 20.9 [18% increase], respectively) than in the resistance group (17.0 to 18.3 [8% increase]) (P<0.001 for both comparisons). Strength increased more in the combination and resistance groups (272 to 320 kg [18% increase] and 288 to 337 kg [19% increase], respectively) than in the aerobic group (265 to 270 kg [4% increase]) (P<0.001 for both comparisons). Body weight decreased by 9% in all exercise groups but did not change significantly in the control group. Lean mass decreased less in the combination and resistance groups than in the aerobic group (56.5 to 54.8 kg [3% decrease] and 58.1 to 57.1 kg [2% decrease], respectively, vs. 55.0 to 52.3 kg [5% decrease]), as did bone mineral density at the total hip (grams per square centimeter; 1.010 to 0.996 [1% decrease] and 1.047 to 1.041 [0.5% decrease], respectively, vs. 1.018 to 0.991 [3% decrease]) (P<0.05 for all comparisons). Exercise-related adverse events included musculoskeletal injuries. CONCLUSIONS:Of the methods tested, weight loss plus combined aerobic and resistance exercise was the most effective in improving functional status of obese older adults. (Funded by the National Institutes of Health; LITOE ClinicalTrials.gov number, NCT01065636 .).
Project description:Introduction: The effects of aerobic exercise on the immune system are not yet fully defined in the scientific literature. This fact demonstrates the need to investigate its influence on existing immunological markers by classifying and quantifying their acute and chronic effects. Objective: To investigate the effects of acute and chronic aerobic exercise on inflammatory markers of healthy adults. Methods: This study is a systematic review according to PRISMA recommendations. The following databases were searched: MEDLINE (via PubMed), Science Direct, Scopus, Web of Science, SciELO, Bireme and Cochrane Library, and article references. The last search was performed in March 2019. We included randomized controlled trials (RCTs) and non-randomized controlled trials (NRCTs) investigating the acute and chronic effects of aerobic exercise on immune markers in healthy male and female adults aged 20 to 45 years, without restrictions in language or year of publication. Two authors independently analyzed the studies by reading the titles, abstracts, and full texts. Risk of Study bias was analyzed using Cochrane's Risk of Bias Tool. Outcomes: We included 15 studies in this systematic review, 13 of which were acute intervention and 2 were chronic, with 296 participants, 196 men and 100 women all being healthy individuals. It was observed that the acute intervention promotes changes in most immunological markers, while the chronic intervention interferes with a smaller proportion, this being in lymphocyte subpopulations. In the evaluation of quality, it was found that most studies did not present a high risk of bias in the evaluated aspects, but an unclear related risk of bias was observed, requiring a more careful analysis. Conclusion: Thus, it can be concluded that the evidence indicates that acute and chronic interventions may modify most immune markers, but aspects such as gender, contraceptive pill use in women, physical capacity of the investigated individuals, environment, and type and intensity of the exercises may interfere with these markers as well as the data analysis. Therefore, this review suggests that further research is needed to contribute to the confirmation and estimation of results.
Project description:We aimed to determine whether creatine supplementation influences lower-limb muscle endurance following an acute bout of aerobic exercise (AE) in young healthy men. Using a randomized, double-blind, placebo-controlled crossover design, 11 men (26.5 ± 6.2 years, body mass index 26.6 ± 2.1 kg/m2),with 12 months of experience in strength training (three times/week) and AE (two times/week) were randomized to receive creatine (20 g/day plus 20 g/day maltodextrin) and placebo (40 g/day maltodextrin) for 7 days, separated by a washout period of 14 days, before performing an acute bout of AE (30 min on treadmill at 80% baseline maximum velocity) which was followed by four sets of bilateral leg extension endurance exercise using a 10-repetition maximum protocol (10 RM)). There was a significant decrease in the number of repetitions performed in the third (Placebo: -20% vs. Creatine: -22%) and fourth set (Placebo: -22% vs. Creatine: -28%) compared with the first set (p < 0.05), with no differences between creatine and placebo. Additionally, no differences were observed between creatine and placebo for the total number of repetitions performed across all four sets (Placebo: 33.9 ± 7.0 vs. Creatine: 34.0 ± 6.9 repetitions, p = 0.97), nor for total work volume (Placebo: 3030.5 ± 1068.2 vs. Creatine: 3039.8 ± 1087.7 kg, p = 0.98). Short-term creatine supplementation has no effect on lower-limb muscle endurance following an acute bout of aerobic exercise in trained young men.