Toll-like receptor 2 promotes breast cancer progression and resistance to chemotherapy.
Ontology highlight
ABSTRACT: Cancer stem cells (CSCs) are the main drivers of disease progression and chemotherapy resistance in breast cancer. Tumor progression and chemoresistance might then be prevented by CSC-targeted therapies. We previously demonstrated that Toll-like Receptor (TLR)2 is overexpressed in CSCs and fuels their self-renewal. Here, we show that high TLR2 expression is linked to poor prognosis in breast cancer patients, therefore representing a candidate target for breast cancer treatment. By using a novel mammary cancer-prone TLR2KO mouse model, we demonstrate that TLR2 is required for CSC pool maintenance and for regulatory T cell induction. Accordingly, cancer-prone TLR2KO mice display delayed tumor onset and increased survival. Transplantation of TLR2WT and TLR2KO cancer cells in either TLR2WT or TLR2KO hosts shows that tumor initiation is mostly sustained by TLR2 expression in cancer cells. TLR2 host deficiency partially impairs cancer cell growth, implying a pro-tumorigenic effect of TLR2 expression in immune cells. Finally, we demonstrate that doxorubicin-induced release of HMGB1 activates TLR2 signaling in cancer cells, leading to a chemotherapy-resistant phenotype. Unprecedented use of TLR2 inhibitors invivo reduces tumor growth and potentiates doxorubicin efficacy with no negative impact on the host immune system, opening new perspectives for the treatment of breast cancer patients.
Project description:Breast cancer progression is accompanied by increased expression of extracellular and cell-surface proteases capable of degrading the extracellular matrix as well as cleaving and activating downstream targets. The type II transmembrane serine proteases (TTSPs) are a family of cell-surface proteases that play critical roles in numerous types of cancers. Therefore, the aim of this study was to identify novel and uncharacterized TTSPs with differential expression in breast cancer and to determine their potential roles in progression. Systematic in silico data analysis followed by immunohistochemical validation identified increased expression of the TTSP family member, TMPRSS13 (transmembrane protease, serine 13), in invasive ductal carcinoma patient tissue samples compared to normal breast tissue. To test whether loss of TMPRSS13 impacts tumor progression, TMPRSS13 was genetically ablated in the oncogene-induced transgenic MMTV-PymT tumor model. TMPRSS13 deficiency resulted in a significant decrease in overall tumor burden and growth rate, as well as a delayed formation of detectable mammary tumors, thus suggesting a causal relationship between TMPRSS13 expression and the progression of breast cancer. Complementary studies using human breast cancer cell culture models revealed that siRNA-mediated silencing of TMPRSS13 expression decreases proliferation, induces apoptosis, and attenuates invasion. Importantly, targeting TMPRSS13 expression renders aggressive triple-negative breast cancer cell lines highly responsive to chemotherapy. At the molecular level, knockdown of TMPRSS13 in breast cancer cells led to increased protein levels of the tumor-suppressive protease prostasin. TMPRSS13/prostasin co-immunoprecipitation and prostasin zymogen activation experiments identified prostasin as a potential novel target for TMPRSS13. Regulation of prostasin levels may be a mechanism that contributes to the pro-oncogenic properties of TMPRSS13 in breast cancer. TMPRSS13 represents a novel candidate for targeted therapy in combination with standard of care chemotherapy agents in patients with hormone receptor-negative breast cancer or in patients with tumors refractory to endocrine therapy.
Project description:Individual cancers are composed of heterogeneous tumor cells with distinct phenotypes and genotypes, with triple negative breast cancers (TNBC) demonstrating the most heterogeneity among breast cancer types. Variability in transcriptional phenotypes could meaningfully limit the efficacy of monotherapies and fuel drug resistance, although to an unknown extent. To determine if transcriptional differences between tumor cells lead to differential drug responses we performed single cell RNA-seq on cell line and PDX models of breast cancer revealing cell subpopulations in states associated with resistance to standard-of-care therapies. We found that TNBC models contained a subpopulation in an inflamed cellular state, often also present in human breast cancer samples. Inflamed cells display evidence of heightened cGAS/STING signaling which we demonstrate is sufficient to cause tumor cell resistance to chemotherapy. Accordingly, inflamed cells were enriched in human tumors taken after neoadjuvant chemotherapy and associated with early recurrence, highlighting the potential for diverse tumor cell states to promote drug resistance.
Project description:Toll-like receptor 9 (TLR9) is a cellular DNA receptor of the innate immune system. DNA recognition via TLR9 results in an inflammatory reaction, which eventually also activates a Th1-biased adaptive immune attack. In addition to cells of the immune system, TLR9 mRNA and protein are also widely expressed in breast cancer cell lines and in clinical breast cancer specimens. Although synthetic TLR9-ligands induce cancer cell invasion in vitro, the role of TLR9 in cancer pathophysiology has remained unclear. In the studies conducted so far, tumor TLR9 expression has been shown to have prognostic significance only in patients that have triple-negative breast cancer (TNBC). Specifically, high tumor TLR9 expression predicts good prognosis among TNBC patients. Pre-clinical studies suggest that TLR9 expression may affect tumor immunophenotype and contribute to the immunogenic benefit of chemotherapy. In this review, we discuss the possible contribution of tumor TLR9 to the pathogenesis and treatment responses in breast cancer.
Project description:Here, we report that lipocalin 2 (Lcn2) promotes breast cancer progression, and we identify the mechanisms underlying this function. We first found that Lcn2 levels were consistently associated with invasive breast cancer in human tissue and urine samples. To investigate the function of Lcn2 in breast cancer progression, Lcn2 was overexpressed in human breast cancer cells and was found to up-regulate mesenchymal markers, including vimentin and fibronectin, down-regulate the epithelial marker E-cadherin, and significantly increase cell motility and invasiveness. These changes in marker expression and cell motility are hallmarks of an epithelial to mesenchymal transition (EMT). In contrast, Lcn2 silencing in aggressive breast cancer cells inhibited cell migration and the mesenchymal phenotype. Furthermore, reduced expression of estrogen receptor (ER) alpha and increased expression of the key EMT transcription factor Slug were observed with Lcn2 expression. Overexpression of ERalpha in Lcn2-expressing cells reversed the EMT and reduced Slug expression, suggesting that ERalpha negatively regulates Lcn2-induced EMT. Finally, orthotopic studies demonstrated that Lcn2-expressing breast tumors displayed a poorly differentiated phenotype and showed increased local tumor invasion and lymph node metastasis. Taken together, these in vitro, in vivo, and human studies demonstrate that Lcn2 promotes breast cancer progression by inducing EMT through the ERalpha/Slug axis and may be a useful biomarker of breast cancer.
Project description:When breast cancer progresses to a metastatic stage, survival rates decline rapidly and it is considered incurable. Thus, deciphering the critical mechanisms of metastasis is of vital importance to develop new treatment options. We hypothesize that studying the proteins that are newly synthesized during the metastatic processes of migration and invasion will greatly enhance our understanding of breast cancer progression. We conducted a mass spectrometry screen following bioorthogonal noncanonical amino acid tagging to elucidate changes in the nascent proteome that occur during epidermal growth factor stimulation in migrating and invading cells. Annexin A2 was identified in this screen and subsequent examination of breast cancer cell lines revealed that Annexin A2 is specifically upregulated in estrogen receptor negative (ER-) cell lines. Furthermore, siRNA knockdown showed that Annexin A2 expression promotes the proliferation, wound healing and directional migration of breast cancer cells. In patients, Annexin A2 expression is increased in ER- breast cancer subtypes. Additionally, high Annexin A2 expression confers a higher probability of distant metastasis specifically for ER- patients. This work establishes a pivotal role of Annexin A2 in breast cancer progression and identifies Annexin A2 as a potential therapeutic target for the more aggressive and harder to treat ER- subtype.
Project description:Substance P plays a pivotal role in human cancer development and progression by binding to its receptor, neurokinin-1. Neurokinin-1 has 2 isoforms: full-length neurokinin-1 and truncated neurokinin-1, the latter lacking the cytoplasmic terminal 96-amino acid residues of the full-length protein. We have identified 3 candidate miR-206 target sites within the 3'-untranslated region of the full-length neurokinin-1 gene from bioinformatics database searches. In the present study, real-time quantitative polymerase chain reaction was performed to quantify the expression of miR-206, and the expression of neurokinin-1 and full-length neurokinin-1 was detected by immunohistochemistry in 82 clinical cases of breast cancer and paired adjacent normal tissues. The miR-206 target gene was demonstrated by using a dual-luciferase reporter assay, quantitative real-time polymerase chain reaction, and Western blotting. Transwell migration and invasion, colony formation, and proliferation assays were performed to evaluate the effects of miR-206 expression on various aspects of breast cancer cell behavior in vitro. We showed that miR-206 expression is upregulated in breast cancer cell lines and breast cancer tissues when compared to that in adjacent normal tissues, and full-length neurokinin-1 expression inversely correlates with Tumor Lymph Node Metastasis (TNM) stage and lymph node metastasis. Western blotting, quantitative real-time polymerase chain reaction, and dual-luciferase reporter assays demonstrated that miR-206 binds the 3'-untranslated region of full-length neurokinin-1 messenger RNA, regulating protein expression. We showed that the overexpression of miR-206 promotes breast cancer cell invasion, migration, proliferation, and colony formation in vitro. The present study furthers the current understanding of the mechanisms underlying breast cancer pathogenesis and may be useful for the development of novel targeted therapies.
Project description:Triple Negative Breast Cancer (TNBC) has the worst prognosis among all breast cancers, and survival in patients with recurrence is rarely beyond 12 months due to acquired resistance to chemotherapy, which is the standard of care for these patients. Our hypothesis is that Estrogen Receptor β1 (ERβ1) increases response to chemotherapy but is opposed by ERβ4, which it preferentially dimerizes with. The role of ERβ1 and ERβ4 in influencing chemotherapy sensitivity has never been studied before. CRISPR/CAS9 was used to truncate ERβ1 Ligand Binding Domain (LBD) and knock down the exon unique to ERβ4. We show that the truncated ERβ1 LBD in a variety of mutant p53 TNBC cell lines, where ERβ1 ligand dependent function was inactivated, had increased resistance to Paclitaxel, whereas the ERβ4 knockdown cell line was sensitized to Paclitaxel. We further show that ERβ1 LBD truncation, as well as treatment with ERβ1 antagonist 2-phenyl-3-(4-hydroxyphenyl)-5,7-bis(trifluoromethyl)-pyrazolo[1,5-a] pyrimidine (PHTPP), leads to increase in the drug efflux transporters. Hypoxia Inducible Factors (HIFs) activate factors involved in pluripotency and regulate the stem cell phenotype, both in normal and cancer cells. Here we show that the ERβ1 and ERβ4 regulate these stem cell markers like SOX2, OCT4, and Nanog in an opposing manner; and we further show that this regulation is mediated by HIFs. We show the increase of cancer cell stemness due to ERβ1 LBD truncation is attenuated when HIF1/2α is knocked down by siRNA. Finally, we show an increase in the breast cancer stem cell population due to ERβ1 antagonist using both ALDEFLUORTM and SOX2/OCT4 response element (SORE6) reporters in SUM159 and MDA-MB-231 cell lines. Since most TNBC cancers are ERβ4 positive, while only a small proportion of TNBC patients are ERβ1 positive, we believe that simultaneous activation of ERβ1 with agonists and inactivation of ERβ4, in combination with paclitaxel, can be more efficacious and yield better outcome for chemotherapy resistant TNBC patients.
Project description:Growth hormone receptor (GHR), a member of the class I cytokine receptor family, plays key roles in cancer progression. Recently, GHR has been reported to be associated with breast cancer development, but the molecular mechanism of GHR in this malignancy is not fully understood. To investigate this issue, we stably inhibited GHR in breast cancer cell lines, which were observed to reduce cell proliferation, tumor growth and induction of apoptosis, and arrest the cell-cycle arrest at the G1-S phase transition. In addition, GHR silencing suppressed the protein levels of B-Raf proto-oncogene, serine/threonine kinase (BRAF), Mitogen-activated protein kinase kinase (MEK) and Extracellular regulated protein kinases (ERK). These findings suggest that GHR may mediate breast cell progression and apoptosis through control of the cell cycle via the BRAF/MEK/ERK signaling pathway.