Ontology highlight
ABSTRACT: Purpose
To identify the genetic basis of an unusual pediatric cortical cataract demonstrating autosomal dominant inheritance in a large European-Australian pedigree.Methods
DNA from four affected individuals were exome sequenced utilizing a NimbleGen SeqCap EZ Exome V3 kit and HiSeq 2500. DNA from 12 affected and four unaffected individuals were genotyped using Human OmniExpress-24 BeadChips. Multipoint linkage and haplotyping were performed (Superlink-Online SNP). DNA from one affected individual and his unaffected father were whole-genome sequenced on a HiSeq X Ten system. Rare small insertions/deletions and single-nucleotide variants (SNVs) were identified in the disease-linked region (Golden Helix SVS). Combined Annotation Dependent Depletion (CADD) analysis predicted variant deleteriousness. Putative enhancer function and variant effects were determined using the Dual-Glo Luciferase Assay system.Results
Linkage mapping identified a 6.23-centimorgan support interval at chromosome 7q36. A co-segregating haplotype refined the critical region to 6.03 Mbp containing 21 protein-coding genes. Whole-genome sequencing uncovered 114 noncoding variants from which CADD predicted one was highly deleterious, a novel substitution within intron-1 of the sonic hedgehog signaling molecule (SHH) gene. ENCODE data suggested this site was a putative enhancer, subsequently confirmed by luciferase reporter assays with variant-associated gene overexpression.Conclusions
In a large pedigree, we have identified a SHH intron variant that co-segregates with an unusual pediatric cortical cataract phenotype. SHH is important for lens formation, and mutations in its receptor (PTCH1) cause syndromic cataract. Our data implicate increased function of an enhancer important for SHH expression primarily within developing eye tissues.
SUBMITTER: Young TL
PROVIDER: S-EPMC9234370 | biostudies-literature |
REPOSITORIES: biostudies-literature