Unknown

Dataset Information

0

A New Pathway for CO2 Reduction Relying on the Self-Activation Mechanism of Boron-Doped Diamond Cathode.


ABSTRACT: By means of an initial electrochemical carbon dioxide reduction reaction (eCO2RR), both the reaction current and Faradaic efficiency of the eCO2RR on boron-doped diamond (BDD) electrodes were significantly improved. Here, this effect is referred to as the self-activation of BDD. Generally, the generation of carbon dioxide radical anions (CO2 •-) is the most recognized pathway leading to the formation of hydrocarbons and oxygenated products. However, the self-activation process enabled the eCO2RR to take place at a low potential, that is, a low energy, where CO2 •- is hardly produced. In this work, we found that unidentate carbonate and carboxylic groups were identified as intermediates during self-activation. Increasing the amount of these intermediates via the self-activation process enhances the performance of eCO2RR. We further evaluated this effect in long-term experiments using a CO2 electrolyzer for formic acid production and found that the electrical-to-chemical energy conversion efficiency reached 50.2% after the BDD self-activation process.

SUBMITTER: Du J 

PROVIDER: S-EPMC9241156 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5125091 | biostudies-literature
| S-EPMC9415291 | biostudies-literature
| S-EPMC5324052 | biostudies-literature
| S-EPMC9417656 | biostudies-literature
| S-EPMC5539713 | biostudies-literature
| S-EPMC10981704 | biostudies-literature
| S-EPMC9320891 | biostudies-literature
| S-EPMC8693035 | biostudies-literature
| S-EPMC6909879 | biostudies-literature
| S-EPMC3509351 | biostudies-literature