Project description:Epithelial ovarian cancer (EOC) is the leading cause of death among gynecological malignancies. Despite surgery and chemotherapy, 5-years survival rates have improved only modestly over the past few decades remaining at 45% for advanced stages. Therefore, novel therapies are urgently needed. The presence of tumor-infiltrating lymphocytes (TILs) in OC tumor microenvironment (TME) has already proved to be correlated with overall survival (OS), while immune evasion mechanisms are associated with poor prognosis. Although these data indicate that immunotherapy has a strong rationale in OC, single agent immune-checkpoints inhibitors (ICIs) have shown only modest results in this malignancy. In this review, we will discuss immune-targeting combination therapies and adoptive cell therapy (ACT), highlighting the challenges represented by these strategies, which aim at disrupting the stroma-tumor barrier to boost immune system against ovarian cancer.
Project description:In our westernised society, the level of physical activity is low. Interventions that increase energy expenditure are generally associated with an improvement in metabolic health. Exercise and exercise training increase energy metabolism and are considered to be among the best strategies for prevention of type 2 diabetes mellitus. More recently, cold exposure has been suggested to have a therapeutic value in type 2 diabetes. At a cellular level, there is evidence that increasing the turnover of cellular substrates such as fatty acids is associated with preventive effects against lipid-induced insulin resistance. Cellular energy sensors may underlie the effects linking energy turnover with metabolic health effects. Here we review data supporting the hypothesis that increasing energy and substrate turnover has beneficial effects on insulin sensitivity and should be considered a target for the prevention and treatment of type 2 diabetes.
Project description:Key messageThe circadian clock controls many molecular activities, impacting experimental interpretation. We quantify the genome-wide effects of time-of-day on the heat-shock response and the effects of "diurnal bias" in stress experiments. Heat stress has significant adverse effects on plant productivity worldwide. Most experiments examining heat stress are performed during daytime hours, generating a 'diurnal bias' in the pathways and regulatory mechanisms identified. Such bias may confound downstream interpretations and limit our understanding of the full response to heat stress. Here we show that the transcriptional and physiological responses to a sudden heat shock in Arabidopsis are profoundly sensitive to the time of day. We observe that plant tolerance and acclimation to heat shock vary throughout the day and are maximal at dusk. Consistently, over 75% of heat-responsive transcripts show a time of day-dependent response, including many previously characterized heat-response genes. This temporal sensitivity implies a complex interaction between time and temperature where daily variations in basal transcription influence thermotolerance. When we examined these transcriptional responses, we uncovered novel night-response genes and cis-regulatory elements, underpinning new aspects of heat stress responses not previously appreciated. Exploiting this temporal variation can be applied to most environmental responses to understand the underlying network wiring. Therefore, we propose that using time as a perturbagen is an approach that will enhance our understanding of plant regulatory networks and responses to environmental stresses.
Project description:MYC is a highly validated oncogenic transcription factor and cancer target. However, the disordered nature of this protein has made it a challenging target, with no clinical stage, direct small-molecule MYC inhibitors available. Recent work leveraging a large in silico chemical library and a rapid in vivo screen has expanded the chemotypes of direct small-molecule inhibitors (MYCi). Novel MYCi represent a class of improved MYC chemical probes that bind directly to MYC to inhibit its function and to promote its degradation by enhancing GSK3β-mediated phosphorylation. One of these compounds, MYCi975, has shown remarkable tolerability and efficacy in vivo and is associated with a selective effect on MYC target gene expression. Additional effects of MYCi on the tumor immune microenvironment including immune cell infiltration and upregulation of PD-L1 expression provide a rationale for combining MYCi with anti-PD-1/PD-L1 therapy to enhance antitumor efficacy. Our strategy for developing MYCi demonstrates an efficient way to identify selective and well-tolerated MYC inhibitors. The new MYCi provide tools for probing MYC function and serve as starting points for the development of novel anti-MYC therapeutics.
Project description:Allosteric drugs have the potential to revolutionize biomedicine due to their enhanced selectivity and protection against overdosage. However, we need to better understand allosteric mechanisms in order to fully harness their potential in drug discovery. In this study, molecular dynamics simulations and nuclear magnetic resonance spectroscopy are used to investigate how increases in temperature affect allostery in imidazole glycerol phosphate synthase. Results demonstrate that temperature increase triggers a cascade of local amino acid-to-amino acid dynamics that remarkably resembles the allosteric activation that takes place upon effector binding. The differences in the allosteric response elicited by temperature increase as opposed to effector binding are conditional to the alterations of collective motions induced by either mode of activation. This work provides an atomistic picture of temperature-dependent allostery, which could be harnessed to more precisely control enzyme function.
Project description:Malaria is characterised by cyclical febrile episodes that result from the rupture of mature schizont-infected erythrocytes releasing merozoites. In patients infected with Plasmodium falciparum, fever may reach peak temperatures as high as 41 °C. Febrile episodes typically have a deleterious effect on parasites and probably benefit the host by aiding parasite clearance; however, the parasite may also gain advantage from limiting its burden on the host and prolonging infection to ensure development and transmission of slow-maturing gametocytes. Programmed cell death (PCD) may provide the parasite with a mechanism of self-limitation, although the occurrence and phenotype of PCD in the erythrocytic stages remain controversial due to conflicting data. This study aimed to characterise the cell death phenotype of P. falciparum in response to in vitro heat stress. A variety of biochemical markers of PCD, including DNA fragmentation, mitochondrial dysregulation and phosphatidylserine externalisation, as well as morphological studies of Giemsa-stained thin smears and real-time microscopy were utilised to characterise the phenotype. Heat stress decreased P. falciparum growth and development in vitro. Late-stage parasites were more susceptible, although early stages were more affected than expected. Early-stage parasites exposed to 41 °C exhibited markers of an apoptosis-like PCD phenotype, including DNA fragmentation and mitochondrial depolarisation. Heat-stressed late-stage parasites showed no significant DNA fragmentation or mitochondrial dysregulation; however, cytoplasmic vacuolisation was suggestive of an autophagy-like form of PCD. Our results therefore showed that biochemical and morphological markers of PCD varied with intra-erythrocytic parasite development and that P. falciparum exhibited facets of both apoptosis- and autophagy-like phenotypes after exposure to febrile temperatures, which may reflect a unique PCD phenotype.
Project description:Intravital imaging is an invaluable tool for studying the expanding range of immune cell functions. Only in vivo can the complex and dynamic behavior of leukocytes and their interactions with their natural microenvironment be observed and quantified. While the capabilities of high-speed, high-resolution confocal and multiphoton microscopes are well-documented and steadily improving, other crucial hardware required for intravital imaging is often developed in-house and less commonly published in detail. In this report, we describe a low-cost, multipurpose, and tissue-stabilizing in vivo imaging platform that enables sensing and regulation of local tissue temperature. The effect of tissue temperature on local blood flow and leukocyte migration is demonstrated in muscle and skin. Two different models of vacuum windows are described in this report, however, the design of the vacuum window can easily be adapted to fit different organs and tissues.
Project description:BackgroundAutophagy regulators play important roles in the occurrence and development of a variety of tumors and are involved in immune regulation and drug resistance. However, the modulatory roles and prognostic value of autophagy regulators in pancreatic cancer have not been identified.MethodsTranscriptomic data and survival information from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to construct a risk score model. Important clinical features were analyzed to generate a nomogram. In addition, we used various algorithms, including ssGSEA, CIBERSORT, XCELL, EPIC, TIMER, and QUANTISEQ, to evaluate the roles of autophagy regulators in the pancreatic cancer immune microenvironment. Furthermore, the mutation landscape was compared between different risk groups.ResultsPan cancer analysis indicated that most of the autophagy regulators were upregulated in pancreatic cancer and were correlated with methylation and CNV level. MET, TSC1, and ITGA6 were identified as the prognostic autophagy regulators and used to construct a risk score model. Some critical clinical indicators, such as age, American Joint Committee on Cancer (AJCC) T stage, AJCC N stage, alcohol and sex, were combined with the risk model to establish the nomogram, which may offer clinical guidance. In addition, our study demonstrated that the low score groups exhibited high immune activity and high abundances of various immune cells, including T cells, B cells, and NK cells. Patients with high risk scores exhibited lower half inhibitory concentration (IC50) values for paclitaxel and had downregulated expression profiles of PD1, CTLA4, and LAG3. Mutation investigation indicated that the high risk groups exhibited a higher mutation burden and higher mutation number compared to the low risk groups. additionally, we verified our risk stratification method using cytology and histology data from our center, and the results are satisfactory.ConclusionWe speculated that autophagy regulators have large effects on the prognosis, immune landscape and drug sensitivity of pancreatic cancer. Our model, which combines critical autophagy regulators and clinical indicators, will provide guidance for clinical treatment.
Project description:BackgroundPeople with Parkinson's disease (PD) have a high fall rate and many falls are associated with turns. Despite this, there is minimal research on effects of rehabilitation on the quality of turns. Further, quantifying turns in the home may have broader implications since rehabilitation of turns would ideally improve turning in real world mobility.MethodsSixty people with PD and a history of falls will be randomized to receive either a novel TURNing InTervention (TURN-IT) or no intervention (control group). The TURN-IT group will be seen for 6 weeks (18 visits) for an individualized, progressive program that is based on the specific constraints of turning in PD. Wearable sensors will be used to measure 7 days of mobility, including turns, before and after intervention or control period. In addition, blinded assessments of gait, mobility and turns will occur before and after intervention for both groups and falls will be monitored for twelve months post intervention with bimonthly email questionnaires.DiscussionThis study has the potential to change how we rehabilitate and assess turning in people with PD and falls. There are several novel aspects to our study including a comprehensive turning-focused intervention that is tailored to the underlying constraints that impair turning in people with PD. Further, our outcome measure of turning quality during 7 days of daily life is novel and has implications for determining real-life changes after rehabilitation. The ultimate goal of this rehabilitation intervention is to improve how patients turn in daily life and to reduce falls.Trials registrationThis protocol is registered at clinicaltrials.gov; #NCT04897256; https://clinicaltrials.gov/ct2/show/NCT04897256?term=Horak&cond=Parkinson+Disease&draw=2&rank=4 .
Project description:Autism-spectrum disorders (ASD) are complex genetic disorders collectively characterized by impaired social interactions and language as well as repetitive and restrictive behaviors. Of the hundreds of genes implicated in ASD, those encoding proteins acting at neuronal synapses have been most characterized by candidate gene studies. However, recent unbiased genome-wide analyses have turned up a multitude of novel candidate genes encoding nuclear factors implicated in chromatin remodeling, histone demethylation, histone variants, and the recognition of DNA methylation. Furthermore, the chromatin landscape of the human genome has been shown to influence the location of de novo mutations observed in ASD as well as the landscape of DNA methylation underlying neurodevelopmental and synaptic processes. Understanding the interactions of nuclear chromatin proteins and DNA with signal transduction pathways and environmental influences in the developing brain will be critical to understanding the relevance of these ASD candidate genes and continued uncovering of the "roots" of autism etiology.