Dasatinib and interferon alpha synergistically induce pyroptosis-like cell death in philadelphia chromosome positive acute lymphoblastic leukemia.
Ontology highlight
ABSTRACT: Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL) is a high-risk disease subtype with a dismal prognosis. Inhibiting BCR-ABL kinase alone is insufficient to eradicate Ph+ALL clones, and alternative BCR-ABL-dependent and -independent pathways need to be targeted as an effective strategy. Our study revealed that the combination of dasatinib and interferon-α showed synergistic activity against Ph+ALL, inducing mitochondrial dysfunction and causing necrosis-like cell lysis. Mechanistic studies showed that the induced cell death was caspase-3-independent. Canonical necroptosis signals, such as RIP1 and MLKL, were not activated; instead, the pyroptosis executor Gasdermin D was upregulated expression and activated. The expression levels of extracellular ATP and IL-1β were also upregulated, both of which are markers of pyroptotic cell death. In a murine Ph+ALL model, the dual drug treatment prolonged the survival of tumor-bearing mice. More importantly, we incorporated the dual drugs to maintenance therapy in 39 patients who were unfit for allogeneic stem cell transplantation (allo-HSCT). The median follow-up was 28.5 months, the 4-year disease-free survival and overall survival rates were 52.2% and 65.2%, respectively. Our data suggest that the combination of dasatinib and interferon-α has potential synergistic activity against Ph+ALL and shows promise as a maintenance therapy for Ph+ALL patients who are unfit for allo-HSCT.
SUBMITTER: Dai Y
PROVIDER: S-EPMC9251703 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA