Unknown

Dataset Information

0

A terahertz near-field nanoscopy revealing edge fringes with a fast and highly sensitive quantum-well photodetector.


ABSTRACT: We demonstrate the successful implementation of a terahertz (THz) quantum-well photodetector (QWP) for effective signal collection in a scattering-type scanning near-field optical microscope (s-SNOM) system. The light source is an electrically pumped THz quantum cascade laser (QCL) at 4.2 THz, which spectrally matches with the peak photoresponse of THz QWP. The sensitive THz QWP has a low noise equivalent power (NEP) of about 1.1 pW/Hz0.5 and a spectral response range from 2 to 7 THz. The fast-responding capability of the THz QWP is vital for detecting the rapidly tip-modulated THz light which can effectively suppress the background noise. The THz images of the nanostructure demonstrate a spatial resolution of about 95 nm, corresponding to ∼λ/752 at 4.2 THz. We experimentally investigate and theoretically interpret the formation of the fringes which appear at the edge position of a gold stripe in the THz near-field image.

SUBMITTER: Qiu F 

PROVIDER: S-EPMC9254002 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7677312 | biostudies-literature
| S-EPMC6841726 | biostudies-literature
| S-EPMC6706520 | biostudies-literature
| S-EPMC4479004 | biostudies-literature
| S-EPMC7859246 | biostudies-literature
| S-EPMC4725355 | biostudies-literature
| S-EPMC3534202 | biostudies-literature
| S-EPMC3042578 | biostudies-literature
| S-EPMC6249216 | biostudies-literature