Project description:Treatments for type 1 diabetes have advanced significantly over recent years. There are now multiple hybrid closed-loop systems commercially available and additional systems are in development. Challenges remain, however. This review outlines the recent advances in closed-loop systems and outlines the remaining challenges, including post-prandial hyperglycemia and exercise-related dysglycemia.
Project description:Tandem Control-IQ and Minimed 780G represent the most Advanced Hybrid Closed Loop (AHCL) systems currently available in pediatric and adult subjects with Type 1 Diabetes (T1D). We retrospectively compared clinical and continuous glucose monitoring data from 51 patients who upgraded to Minimed 780G system and have completed 1-month observation period with data from 39 patients who upgraded to Tandem Control-IQ. Inverse probability weighting was used to minimize the basal characteristics imbalances. Both AHCL systems showed a significant improvement in glycemic parameters. Minimed 780G group achieved higher TIR increase (p= 0.004) and greater reduction of blood glucose average (p= 0.001). Tandem Control-IQ system significantly reduced the occurrence of TBR (p= 0.010) and the Coefficient of Variation of glucose levels (p= 0.005). The use of ACHL systems led to a significant improvement of glycemic control substantially reaching the International recommended glycemic targets. Minimed 780G appears to be more effective in managing hyperglycemia, while Tandem Control-IQ seems to be more effective in reducing time in hypoglycemia.
Project description:Advances in diabetes technologies have enabled the development of automated closed-loop insulin delivery systems. Several hybrid closed-loop systems have been commercialised, reflecting rapid transition of this evolving technology from research into clinical practice, where it is gradually transforming the management of type 1 diabetes in children and adults. In this review we consider the supporting evidence in terms of glucose control and quality of life for presently available closed-loop systems and those in development, including dual-hormone closed-loop systems. We also comment on alternative 'do-it-yourself' closed-loop systems. We remark on issues associated with clinical adoption of these approaches, including training provision, and consider limitations of presently available closed-loop systems and areas for future enhancements to further improve outcomes and reduce the burden of diabetes management.
Project description:Automated control of blood glucose (BG) concentration is a long-sought goal for type 1 diabetes therapy. We have developed a closed-loop control system that uses frequent measurements of BG concentration along with subcutaneous delivery of both the fast-acting insulin analog lispro and glucagon (to imitate normal physiology) as directed by a computer algorithm. The algorithm responded only to BG concentrations and incorporated a pharmacokinetic model for lispro. Eleven subjects with type 1 diabetes and no endogenous insulin secretion were studied in 27-hour experiments, which included three carbohydrate-rich meals. In six subjects, the closed-loop system achieved a mean BG concentration of 140 mg/dl, which is below the mean BG concentration target of < or =154 mg/dl recommended by the American Diabetes Association. There were no instances of treatment-requiring hypoglycemia. Five other subjects exhibited hypoglycemia that required treatment; however, these individuals had slower lispro absorption kinetics than the six subjects that did not become hypoglycemic. The time-to-peak plasma lispro concentrations of subjects that exhibited hypoglycemia ranged from 71 to 191 min (mean, 117 +/- 48 min) versus 56 to 72 min (mean, 64 +/- 6 min) in the group that did not become hypoglycemic (aggregate mean of 84 min versus 31 min longer than the algorithm's assumption of 33 min, P = 0.07). In an additional set of experiments, adjustment of the algorithm's pharmacokinetic parameters (time-to-peak plasma lispro concentration set to 65 min) prevented hypoglycemia in both groups while achieving an aggregate mean BG concentration of 164 mg/dl. These results demonstrate the feasibility of safe BG control by a bihormonal artificial endocrine pancreas.
Project description:ObjectiveA fully closed-loop insulin-only system was developed to provide glucose control in patients with type 1 diabetes without requiring announcement of meals or activity. Our goal was to assess initial safety and efficacy of this system.Research design and methodsThe multiple model probabilistic controller (MMPPC) anticipates meals when the patient is awake. The controller used the subject's basal rates and total daily insulin dose for initialization. The system was tested at two sites on 10 patients in a 30-h inpatient study, followed by 15 subjects at three sites in a 54-h supervised hotel study, where the controller was challenged by exercise and unannounced meals. The system was implemented on the UVA DiAs system using a Roche Spirit Combo Insulin Pump and a Dexcom G4 Continuous Glucose Monitor.ResultsThe mean overall (24-h basis) and nighttime (11 PM-7 AM) continuous glucose monitoring (CGM) values were 142 and 125 mg/dL during the inpatient study. The hotel study used a different daytime tuning and manual announcement, instead of automatic detection, of sleep and wake periods. This resulted in mean overall (24-h basis) and nighttime CGM values of 152 and 139 mg/dL for the hotel study and there was also a reduction in hypoglycemia events from 1.6 to 0.91 events/patient/day.ConclusionsThe MMPPC system achieved a mean glucose that would be particularly helpful for people with an elevated A1c as a result of frequent missed meal boluses. Current full closed loop has a higher risk for hypoglycemia when compared with algorithms using meal announcement.
Project description:Aims: To explore healthcare professionals' views about the training and support needed to rollout closed-loop technology to pregnant women with type 1 diabetes. Methods: We interviewed (n = 19) healthcare professionals who supported pregnant women using CamAPS FX closed-loop during the Automated insulin Delivery Amongst Pregnant women with Type 1 diabetes (AiDAPT) trial. Data were analyzed descriptively. An online workshop involving (n = 15) trial team members was used to inform recommendations. Ethics approvals were obtained in conjunction with those for the wider trial. Results: Interviewees expressed enthusiasm for a national rollout of closed-loop, but anticipated various challenges, some specific to use during pregnancy. These included variations in insulin pump and continuous glucose monitoring expertise and difficulties embedding and retaining key skills, due to the relatively small numbers of pregnant women using closed-loop. Inexperienced staff also highlighted difficulties interpreting data downloads. To support rollout, interviewees recommended providing expert initial advice training, delivered by device manufacturers together with online training resources and specific checklists for different systems. They also highlighted a need for 24 h technical support, especially when supporting technology naive women after first transitioning onto closed-loop in early pregnancy. They further recommended providing case-based meetings and mentorship for inexperienced colleagues, including support interpreting data downloads. Interviewees were optimistic that if healthcare professionals received training and support, their long-term workloads could be reduced because closed-loop lessened women's need for glycemic management input, especially in later pregnancy. Conclusions: Interviewees identified challenges and opportunities to rolling-out closed-loop and provided practical suggestions to upskill inexperienced staff supporting pregnant women using closed-loop. A key priority will be to determine how best to develop mentorship services to support inexperienced staff delivering closed-loop. Clinical Trials Registration: NCT04938557.
Project description:Background and aimsTandem Control-IQ and MiniMed 780G are the main Advanced Hybrid Closed Loop (AHCL) systems currently available in pediatric and adult patients with Type 1 Diabetes (T1D). The aim of our study was to evaluate glycemic control after 1-year of follow-up extending our previous study of 1-month comparison between the two systems.MethodsWe retrospectively compared clinical and continuous glucose monitoring (CGM) data from the patients included in the previous study which have completed 1-year observation period. The study population consisted of 74 patients, 42 Minimed 780G users and 32 Tandem Control-IQ users. Linear mixed models with random intercept were performed to study the variations over time and the interaction between time and system; Mann-Whitney or T-test were used to compare systems at 1-year.ResultsBoth systems have been shown to be effective in maintaining the glycemic improvement achieved one month after starting AHCL. Significant changes over time were observed for TIR, TAR, TAR>250mg/dl, average glucose levels and SD (p<0.001). At 1-year follow-up Minimed 780G obtained better improvement in TIR (p<0.001), TAR (p=0.002), TAR>250mg/dl (p=0.001), average glucose levels (p<0.001). The comparison of the glycemic parameters at 1-year showed a significant superiority of Minimed 780G in terms of TIR (71% vs 68%; p=0.001), TAR (p=0.001), TAR>250 (p=0.009), average glucose levels(p=0.001) and SD (p=0.031).ConclusionsThe use of AHCL systems led to a significant improvement of glycemic control at 1-month, which is maintained at 1-year follow-up. MiniMed is more effective than Tandem in reaching the International recommended glycemic targets. Continuous training and education in the use of technology is essential to get the best out of the most advanced technological tools.
Project description:BackgroundAutomated closed-loop control (CLC), known as the "artificial pancreas" is emerging as a treatment option for Type 1 Diabetes (T1D), generally superior to sensor-augmented insulin pump (SAP) treatment. It is postulated that evening-night (E-N) CLC may account for most of the benefits of 24-7 CLC; however, a direct comparison has not been done.MethodsIn this trial (NCT02679287), adults with T1D were randomised 1:1 to two groups, which followed different sequences of four 8-week sessions, resulting in two crossover designs comparing SAP vs E-N CLC and E-N CLC vs 24-7 CLC, respectively. Eligibility: T1D for at least 1 year, using an insulin pump for at least six months, ages 18 years or older. Primary hypothesis: E-N CLC compared to SAP will decrease percent time <70mg/dL (3.9mmol/L) measured by continuous glucose monitoring (CGM) without deterioration in HbA1c. Secondary Hypotheses: 24-7 CLC compared to SAP will increase CGM-measured time in target range (TIR, 70-180mg/dL; 3.9-10mmol/L) and will reduce glucose variability during the day.FindingsNinety-three participants were randomised and 80 were included in the analysis, ages 18-69 years; HbA1c levels 5.4-10.6%; 66% female. Compared to SAP, E-N CLC reduced overall time <70mg/dL from 4.0% to 2.2% () resulting in an absolute difference of 1.8% (95%CI: 1.2-2.4%), p<0.0001. This was accompanied by overall reduction in HbA1c from 7.4% at baseline to 7.1% at the end of study, resulting in an absolute difference of 0.3% (95% CI: 0.1-0.4%), p<0.0001. There were 5 severe hypoglycaemia adverse events attributed to user-directed boluses without malfunction of the investigational device, and no diabetic ketoacidosis events.InterpretationIn type 1 diabetes, evening-night closed-loop control was superior to sensor-augmented pump therapy, achieving most of the glycaemic benefits of 24-7 closed-loop.
Project description:BackgroundThis study evaluated meal bolus insulin delivery strategies and associated postprandial glucose control while using an artificial pancreas (AP) system.Subjects and methodsThis study was a multicenter trial in 53 patients, 12-65 years of age, with type 1 diabetes for at least 1 year and use of continuous subcutaneous insulin infusion for at least 6 months. Four different insulin bolus strategies were assessed: standard bolus delivered with meal (n=51), standard bolus delivered 15 min prior to meal (n=40), over-bolus of 30% delivered with meal (n=40), and bolus purposely omitted (n=46). Meal carbohydrate (CHO) intake was 1 g of CHO/kg of body weight up to a maximum of 100 g for the first three strategies or up to a maximum of 50 g for strategy 4.ResultsOnly three of 177 meals (two with over-bolus and one with standard bolus 15 min prior to meal) had postprandial blood glucose values of <60 mg/dL. Postprandial hyperglycemia (blood glucose level >180 mg/dL) was prolonged for all four bolus strategies but was shorter for the over-bolus (41% of the 4-h period) than the two standard bolus strategies (73% for each). Mean postprandial blood glucose level was 15.9 mg/dL higher for the standard bolus with meal compared with the prebolus (baseline-adjusted, P=0.07 for treatment effect over the 4-h period).ConclusionsThe AP handled the four bolus situations safely, but at the expense of having elevated postprandial glucose levels in most subjects. This was most likely secondary to suboptimal performance of the algorithm.
Project description:Diabetes mellitus is a complex disorder characterized by insufficient insulin production or insulin resistance, which results in a lifelong dependence on glucose-lowering drugs for almost all patients. During the fight with diabetes, researchers are always thinking about what characteristics the ideal hypoglycemic drugs should have. From the point of view of the drugs, they should maintain effective control of blood sugar, have a very low risk of hypoglycemia, not increase or decrease body weight, improve β-cell function, and delay disease progression. Recently, the advent of oral peptide drugs, such as semaglutide, brings exciting hope to patients with chronic diabetes. Legumes, as an excellent source of protein, peptides, and phytochemicals, have played significant roles in human health throughout human history. Some legume-derived peptides with encouraging anti-diabetic potential have been gradually reported over the last two decades. Their hypoglycemic mechanisms have also been clarified at some classic diabetes treatment targets, such as the insulin receptor signaling pathway or other related pathways involved in the progress of diabetes, and key enzymes including α-amylase, α-glucosidase, and dipeptidyl peptidase-IV (DPP-4). This review summarizes the anti-diabetic activities and mechanisms of peptides from legumes and discusses the prospects of these peptide-based drugs in type 2 diabetes (T2D) management.