Unknown

Dataset Information

0

Tunable Infrared Detection, Radiative Cooling and Infrared-Laser Compatible Camouflage Based on a Multifunctional Nanostructure with Phase-Change Material.


ABSTRACT: The nanostructure composed of nanomaterials and subwavelength units offers flexible design freedom and outstanding advantages over conventional devices. In this paper, a multifunctional nanostructure with phase-change material (PCM) is proposed to achieve tunable infrared detection, radiation cooling and infrared (IR)-laser compatible camouflage. The structure is very simple and is modified from the classic metal-dielectric-metal (MIM) multilayer film structure. We innovatively composed the top layer of metals with slits, and introduced a non-volatile PCM Ge2Sb2Te5 (GST) for selective absorption/radiation regulation. According to the simulation results, wide-angle and polarization-insensitive dual-band infrared detection is realized in the four-layer structure. The transformation from infrared detection to infrared stealth is realized in the five-layer structure, and laser stealth is realized in the atmospheric window by electromagnetic absorption. Moreover, better radiation cooling is realized in the non-atmospheric window. The proposed device can achieve more than a 50% laser absorption rate at 10.6 μm while ensuring an average infrared emissivity below 20%. Compared with previous works, our proposed multifunctional nanostructures can realize multiple applications with a compact structure only by changing the temperature. Such ultra-thin, integratable and multifunctional nanostructures have great application prospects extending to various fields such as electromagnetic shielding, optical communication and sensing.

SUBMITTER: Luo M 

PROVIDER: S-EPMC9268176 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7985314 | biostudies-literature
| S-EPMC10403604 | biostudies-literature
| S-EPMC10550919 | biostudies-literature
| S-EPMC9330185 | biostudies-literature
| S-EPMC10724423 | biostudies-literature
| S-EPMC9419168 | biostudies-literature
| S-EPMC5773602 | biostudies-literature
| S-EPMC8040807 | biostudies-literature
| S-EPMC9475522 | biostudies-literature
| S-EPMC10826333 | biostudies-literature