Unknown

Dataset Information

0

Fast Quantum Approach for Evaluating the Energy of Non-Covalent Interactions in Molecular Crystals: The Case Study of Intermolecular H-Bonds in Crystalline Peroxosolvates.


ABSTRACT: Energy/enthalpy of intermolecular hydrogen bonds (H-bonds) in crystals have been calculated in many papers. Most of the theoretical works used non-periodic models. Their applicability for describing intermolecular H-bonds in solids is not obvious since the crystal environment can strongly change H-bond geometry and energy in comparison with non-periodic models. Periodic DFT computations provide a reasonable description of a number of relevant properties of molecular crystals. However, these methods are quite cumbersome and time-consuming compared to non-periodic calculations. Here, we present a fast quantum approach for estimating the energy/enthalpy of intermolecular H-bonds in crystals. It has been tested on a family of crystalline peroxosolvates in which the H∙∙∙O bond set fills evenly (i.e., without significant gaps) the range of H∙∙∙O distances from ~1.5 to ~2.1 Å typical for strong, moderate, and weak H-bonds. Four of these two-component crystals (peroxosolvates of macrocyclic ethers and creatine) were obtained and structurally characterized for the first time. A critical comparison of the approaches for estimating the energy of intermolecular H-bonds in organic crystals is carried out, and various sources of errors are clarified.

SUBMITTER: Medvedev AG 

PROVIDER: S-EPMC9268483 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6126646 | biostudies-literature
| S-EPMC5828600 | biostudies-literature
| S-EPMC8230504 | biostudies-literature
| S-EPMC7793138 | biostudies-literature
| S-EPMC5750021 | biostudies-literature
| S-EPMC7815839 | biostudies-literature
| S-EPMC6767229 | biostudies-literature
| S-EPMC7472554 | biostudies-literature
| S-EPMC6335609 | biostudies-literature
| S-EPMC9446889 | biostudies-literature