Project description:Genome-wide association studies (GWAS) have successfully identified thousands of associations between common genetic variants and human disease phenotypes, but the majority of these variants are non-coding, often requiring genetic fine-mapping, extensive epigenomic profiling, and individual reporter assays to delineate potential causal variants. We employ a massively parallel reporter assay to simultaneous screen 2756 variants in strong linkage-disequilibrium with 75 sentinel variants associated with red blood cell traits. We show that this assay identifies elements with erythroid-specific endogenous regulatory activity. Across 23 variants, we conservatively identified 32 putative causal variants (PCVs). We demonstrate endogenous enhancer activity for three PCVs that predominantly affect the transcription of SMIM1, RBM38, and CD164 using targeted genome editing. Functional follow up of RBM38 delineates a key role for this gene in the dramatic alternative splicing program occurring during terminal erythropoiesis. Finally, we provide evidence for how common GWAS-nominated variants can disrupt cell-type specific transcriptional regulatory pathways.
Project description:Genome-wide association studies (GWAS) have successfully identified thousands of associations between common genetic variants and human disease phenotypes, but the majority of these variants are non-coding, often requiring genetic fine-mapping, epigenomic profiling, and individual reporter assays to delineate potential causal variants. We employ a massively parallel reporter assay (MPRA) to simultaneously screen 2,756 variants in strong linkage disequilibrium with 75 sentinel variants associated with red blood cell traits. We show that this assay identifies elements with endogenous erythroid regulatory activity. Across 23 sentinel variants, we conservatively identified 32 MPRA functional variants (MFVs). We used targeted genome editing to demonstrate endogenous enhancer activity across 3 MFVs that predominantly affect the transcription of SMIM1, RBM38, and CD164. Functional follow-up of RBM38 delineates a key role for this gene in the alternative splicing program occurring during terminal erythropoiesis. Finally, we provide evidence for how common GWAS-nominated variants can disrupt cell-type-specific transcriptional regulatory pathways.
Project description:To extend the understanding of host genetic determinants of HIV-1 control, we performed a genome-wide association study in a cohort of 2,554 infected Caucasian subjects. The study was powered to detect common genetic variants explaining down to 1.3% of the variability in viral load at set point. We provide overwhelming confirmation of three associations previously reported in a genome-wide study and show further independent effects of both common and rare variants in the Major Histocompatibility Complex region (MHC). We also examined the polymorphisms reported in previous candidate gene studies and fail to support a role for any variant outside of the MHC or the chemokine receptor cluster on chromosome 3. In addition, we evaluated functional variants, copy-number polymorphisms, epistatic interactions, and biological pathways. This study thus represents a comprehensive assessment of common human genetic variation in HIV-1 control in Caucasians.
Project description:Social communication difficulties represent an autistic trait that is highly heritable and persistent during the course of development. However, little is known about the underlying genetic architecture of this phenotype.We performed a genome-wide association study on parent-reported social communication problems using items of the children's communication checklist (age 10 to 11 years) studying single and/or joint marker effects. Analyses were conducted in a large UK population-based birth cohort (Avon Longitudinal Study of Parents and their Children, ALSPAC, N = 5,584) and followed-up within a sample of children with comparable measures from Western Australia (RAINE, N = 1364).Two of our seven independent top signals (P-discovery <1.0E-05) were replicated (0.009 <P-replication ?0.02) within RAINE and suggested evidence for association at 6p22.1 (rs9257616, meta-P = 2.5E-07) and 14q22.1 (rs2352908, meta-P = 1.1E-06). The signal at 6p22.1 was identified within the olfactory receptor gene cluster within the broader major histocompatibility complex (MHC) region. The strongest candidate locus within this genomic area was TRIM27. This gene encodes an ubiquitin E3 ligase, which is an interaction partner of methyl-CpG-binding domain (MBD) proteins, such as MBD3 and MBD4, and rare protein-coding mutations within MBD3 and MBD4 have been linked to autism. The signal at 14q22.1 was found within a gene-poor region.Single-variant findings were complemented by estimations of the narrow-sense heritability in ALSPAC suggesting that approximately a fifth of the phenotypic variance in social communication traits is accounted for by joint additive effects of genotyped single nucleotide polymorphisms throughout the genome (h2(SE) = 0.18(0.066), P = 0.0027).Overall, our study provides both joint and single-SNP-based evidence for the contribution of common polymorphisms to variation in social communication phenotypes.
Project description:We estimate and partition genetic variation for height, body mass index (BMI), von Willebrand factor and QT interval (QTi) using 586,898 SNPs genotyped on 11,586 unrelated individuals. We estimate that ?45%, ?17%, ?25% and ?21% of the variance in height, BMI, von Willebrand factor and QTi, respectively, can be explained by all autosomal SNPs and a further ?0.5-1% can be explained by X chromosome SNPs. We show that the variance explained by each chromosome is proportional to its length, and that SNPs in or near genes explain more variation than SNPs between genes. We propose a new approach to estimate variation due to cryptic relatedness and population stratification. Our results provide further evidence that a substantial proportion of heritability is captured by common SNPs, that height, BMI and QTi are highly polygenic traits, and that the additive variation explained by a part of the genome is approximately proportional to the total length of DNA contained within genes therein.
Project description:Genome-wide association studies (GWAS) have successfully identified thousands of associations between common genetic variants and human disease phenotypes, but the majority of these variants are non-coding, often requiring genetic fine-mapping, epigenomic profiling, and individual reporter assays to delineate potential causal variants. We employ a massively parallel reporter assay (MPRA) to simultaneously screen 2,756 variants in strong linkage disequilibrium with 75 sentinel variants associated with red blood cell traits. We show that this assay identifies elements with endogenous erythroid regulatory activity. Across 23 sentinel variants, we conservatively identified 32 MPRA functional variants (MFVs). We used targeted genome editing to demonstrate endogenous enhancer activity across 3 MFVs that predominantly affect the transcription of SMIM1, RBM38, and CD164. Functional follow-up of RBM38 delineates a key role for this gene in the alternative splicing program occurring during terminal erythropoiesis. Finally, we provide evidence for how common GWAS-nominated variants can disrupt cell-type-specific transcriptional regulatory pathways.
Project description:Genome-wide association studies (GWAS) have successfully identified thousands of associations between common genetic variants and human disease phenotypes, but the majority of these variants are non-coding, often requiring genetic fine-mapping, epigenomic profiling, and individual reporter assays to delineate potential causal variants. We employ a massively parallel reporter assay (MPRA) to simultaneously screen 2,756 variants in strong linkage disequilibrium with 75 sentinel variants associated with red blood cell traits. We show that this assay identifies elements with endogenous erythroid regulatory activity. Across 23 sentinel variants, we conservatively identified 32 MPRA functional variants (MFVs). We used targeted genome editing to demonstrate endogenous enhancer activity across 3 MFVs that predominantly affect the transcription of SMIM1, RBM38, and CD164. Functional follow-up of RBM38 delineates a key role for this gene in the alternative splicing program occurring during terminal erythropoiesis. Finally, we provide evidence for how common GWAS-nominated variants can disrupt cell-type-specific transcriptional regulatory pathways.
Project description:Exploring genetic pleiotropy can provide clues to a mechanism underlying the observed epidemiological association between type 2 diabetes and heightened fracture risk. We examined genetic variants associated with bone mineral density (BMD) for association with type 2 diabetes and glycemic traits in large well-phenotyped and -genotyped consortia. We undertook follow-up analysis in ∼19,000 individuals and assessed gene expression. We queried single nucleotide polymorphisms (SNPs) associated with BMD at levels of genome-wide significance, variants in linkage disequilibrium (r(2) > 0.5), and BMD candidate genes. SNP rs6867040, at the ITGA1 locus, was associated with a 0.0166 mmol/L (0.004) increase in fasting glucose per C allele in the combined analysis. Genetic variants in the ITGA1 locus were associated with its expression in the liver but not in adipose tissue. ITGA1 variants appeared among the top loci associated with type 2 diabetes, fasting insulin, β-cell function by homeostasis model assessment, and 2-h post-oral glucose tolerance test glucose and insulin levels. ITGA1 has demonstrated genetic pleiotropy in prior studies, and its suggested role in liver fibrosis, insulin secretion, and bone healing lends credence to its contribution to both osteoporosis and type 2 diabetes. These findings further underscore the link between skeletal and glucose metabolism and highlight a locus to direct future investigations.
Project description:Mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) is expressed in all diabetes-relevant tissues and mediates cytokine-induced insulin resistance. We investigated whether common single nucleotide polymorphisms (SNPs) in the MAP4K4 locus associate with glucose intolerance, insulin resistance, impaired insulin release, or elevated plasma cytokines. The best hit was tested for association with type 2 diabetes. Subjects (N?=?1,769) were recruited from the Tübingen Family (TÜF) study for type 2 diabetes and genotyped for tagging SNPs. In a subgroup, cytokines were measured. Association with type 2 diabetes was tested in a prospective case-cohort study (N?=?2,971) derived from the EPIC-Potsdam study. Three SNPs (rs6543087, rs17801985, rs1003376) revealed nominal and two SNPs (rs11674694, rs11678405) significant associations with 2-hour glucose levels. SNPs rs6543087 and rs11674694 were also nominally associated with decreased insulin sensitivity. Another two SNPs (rs2236936, rs2236935) showed associations with reduced insulin release, driven by effects in lean subjects only. Three SNPs (rs11674694, rs13003883, rs2236936) revealed nominal associations with IL-6 levels. SNP rs11674694 was significantly associated with type 2 diabetes. In conclusion, common variation in MAP4K4 is associated with insulin resistance and ?-cell dysfunction, possibly via this gene's role in inflammatory signalling. This variation's impact on insulin sensitivity may be more important since its effect on insulin release vanishes with increasing BMI.