Project description:BackgroundPreoperative anxiety in cardiac surgery can lead to prolonged hospital stays and negative postoperative outcomes. An improved patient education using 3D models may reduce preoperative anxiety and risks associated with it.MethodsPatient education was performed with standardized paper-based methods (n = 34), 3D-printed models (n = 34) or virtual reality models (n = 31). Anxiety and procedural understanding were evaluated using questionnaires prior to and after the patient education. Additionally, time spent for the education and overall quality were evaluated among further basic characteristics (age, gender, medical expertise, previous non-cardiac surgery and previously informed patients). Included surgeries were coronary artery bypass graft, surgical aortic valve replacement and thoracic aortic aneurysm surgery.ResultsA significant reduction in anxiety measured by Visual Analog Scale was achieved after patient education with virtual reality models (5.00 to 4.32, Δ-0.68, p < 0.001). Procedural knowledge significantly increased for every group after the patient education while the visualization and satisfaction were best rated for patient education with virtual reality. Patients rated the quality of the patient education using both visualization methods individually [3D and virtual reality (VR) models] higher compared to the control group of conventional paper-sheets (control paper-sheets: 86.32 ± 11.89%, 3D: 94.12 ± 9.25%, p < 0.0095, VR: 92.90 ± 11.01%, p < 0.0412).ConclusionRoutine patient education with additional 3D models can significantly improve the patients' satisfaction and reduce subjective preoperative anxiety effectively.
Project description:BackgroundThe issue of surgical safety has increased significantly over the last few decades. Several studies have established that it is linked to non-technical performance, rather than clinical competencies. Non-technical skills can be blended with technical training in the surgical profession to improve surgeons' abilities and enhance patient care and procedural skills. The main goal of this study was to determine orthopedic surgeons' requirements of non-technical skills, and to identify the most pressing issues.MethodsWe conducted a self-administered online questionnaire survey in this cross-sectional study. The questionnaire was piloted, validated, pretested, and clearly stated the study's purpose. After the pilot, minor wording and questions were clarified before starting the data collection. Orthopedic surgeons from the Middle East and Northern Africa were invited. The questionnaire was based on a five-point Likert scale, the data were analyzed categorically, and variables were summarized as descriptive statistics.ResultsOf the 1713 orthopedic surgeons invited, 60% completed the survey (1033 out of 1713). The majority demonstrated a high likelihood of participating in such activities in the future (80.5%). More than half (53%) of them preferred non-technical skills courses to be part of major orthopedic conferences, rather than independent courses. Most (65%) chose them to be face-to-face. Although 97.2% agreed on the importance of these courses, only 27% had attended similar courses in the last three years. Patient safety, infection prevention and control, and communication skills were ranked at the top as topics to be addressed. Moreover, participants indicated they would most likely attend courses on infection prevention and control, patient safety and teamwork, and team management.ConclusionThe results highlight the need for non-technical skills training in the region and the general preferences regarding modality and setting. These findings support the high demand from orthopedic surgeons' perspective to develop an educational program on non-technical skills.
Project description:Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing intraoperative guidance tools, teaching patients and surgical trainees, and producing patient-specific prosthetics in everyday surgical practice.
Project description:Despite recent advances to control the spatial composition and dynamic functionalities of bacteria embedded in materials, bacterial localization into complex three-dimensional (3D) geometries remains a major challenge. We demonstrate a 3D printing approach to create bacteria-derived functional materials by combining the natural diverse metabolism of bacteria with the shape design freedom of additive manufacturing. To achieve this, we embedded bacteria in a biocompatible and functionalized 3D printing ink and printed two types of "living materials" capable of degrading pollutants and of producing medically relevant bacterial cellulose. With this versatile bacteria-printing platform, complex materials displaying spatially specific compositions, geometry, and properties not accessed by standard technologies can be assembled from bottom up for new biotechnological and biomedical applications.
Project description:Ordered mesoporous silica materials gain high interest because of their potential applications in catalysis, selective adsorption, separation, and controlled drug release. Due to their morphological characteristics, mainly the tunable, ordered nanometric pores, they can be utilized as supporting hosts for confined chemical reactions. Applications of these materials, however, are limited by structural design. Here, we present a new approach for the 3D printing of complex geometry silica objects with an ordered mesoporous structure by stereolithography. The process uses photocurable liquid compositions that contain a structure-directing agent, silica precursors, and elastomer-forming monomers that, after printing and calcination, form porous silica monoliths. The objects have extremely high surface area, 1900 m2/g, and very low density and are thermally and chemically stable. This work enables the formation of ordered porous objects having complex geometries that can be utilized in applications in both the industry and academia, overcoming the structural limitations associated with traditional processing methods.
Project description:With the advent of three-dimensional printing, rapid growth in the field and application in spinal and orthopedic surgery has been seen. This technology is now being applied in creating patient-specific implants, as it offers benefits over the generic alternative, with growing literature supporting this. This report details a unique application of virtual surgical planning and manufacture of a personalized implant in a case of cervical disc replacement failure with severe osteolysis and resultant hypermobility. Where this degree of degenerative bone loss would often necessitate a vertebrectomy to be performed, this case highlights the considerable customizability of 3D-printed patient-specific implants to contour to the bony defects, allowing for a smaller and safer operation, with the achievement of stability as early as 3 months after the procedure, by the presence of osseointegration. With increasing developments in virtual planning technology and 3D printing ability, the future of complex spinal revision surgery may adopt these technologies as it affords the patient a faster, safer, and less invasive and destructive procedure.
Project description:During the past 5 years, the body of literature surrounding the utilization of three-dimensional (3D) printing in the field of urology has grown exponentially. Incentivized by work hour restrictions, patient safety initiatives, and inspired by technical advances in biomaterials and rapid printing strategies, this emerging, and fascinating area of research has begun to make headway into clinical practice. However, concerns about cost, limited understanding of the technical processes involved, and lack of its potential uses remain barriers to its widespread adoption. We examined existing published literature on how 3D printing technologies have been utilized in the field of Urology to enhance pre-operative planning, revitalize surgical training, and modernize patient education, with particular focus on, robotic surgery. To date, 3D-printed models have been used and studied most commonly in the preoperative planning for nephron-sparing surgeries during the treatment of renal masses, where the challenges of complex renal anatomy and benefits of reducing renal ischemic injury create the most intuitive value. Prostate models are the second most common, particularly in the planning of nerve-sparing procedures. Early studies have demonstrated sufficient realism and educational effectiveness. Subsequent studies demonstrated improved surgeon confidence, operative performance, and optimized patient outcomes including high levels of patient satisfaction. Realistic, accurate, and reasonably priced models can currently be generated within hours using standard desktop 3D printers. While primarily utilized as anatomic replicas of diseased organs that restore a sense of haptic feedback lost in robotic procedures, innovations in polymers, improvements in 3D printer host and modeling software, and upgrades in printer hardware allow this technology to serve as a comprehensive, interactive, simulation platform that can be a critical surgical decision making as well as an effective teaching tool. As Urologists continue to rapidly diversify and iterate upon this adaptive modality, the benefits in patient outcomes will likely outpace the diminishing drawbacks, and we may well see the next revolution in surgical education, robotic techniques, and personalized medicine concurrently.
Project description:BackgroundPercutaneous closure of paravalvular leak (PVL) has emerged as an alternative to surgical management in selected cases. Achieving complete PVL occlusion, while respecting prosthesis function remains challenging. A multimodal imaging analysis of PVL morphology before and during the procedure is mandatory to select an appropriate device. We aim to explore the additional value of 3D printing in predicting device related adverse events including mechanical valve leaflet blockade, risk of device embolization and residual shunting.MethodsFrom the FFPP registries (NCT05089136 and NCT05117359), we included 11 transcatheter PVL closure procedures from three centers for which 3D printed models were produced. Cardiac CT was used for segmentation for 3D printed models (3D-heartmodeling, Caissargues, France). Technology used a laser to fuse very fine powders (TPU Thermoplastic polyurethane) into a final part-laser sintering technology (SLS) with an adapted elasticity. A simulation on 3D printed model was performed using a set of occluders.ResultsPVLs were located around aortic prostheses in six cases, mitral prostheses in four cases and tricuspid ring in one case. The device chosen during the simulation on the 3D printed model matched the one implanted in eight cases. In the three other cases, a similar device type was chosen during the procedures but with a different size. A risk of prosthesis leaflet blockade was identified on 3D printed models in four cases. During the procedure, the occluder was removed before release in one case. In another case the device was successfully repositioned and released. In two patients, leaflet impingement was observed post-operatively and surgical device removal had to be performed.ConclusionIn a case-series of complex transcatheter PVL closure procedures, hands-on simulation testing on 3D printed models proved its usefulness to plan and facilitate these challenging procedures.
Project description:Inkjet printing is widely considered a promising strategy to pattern hydrogels and living cells into three-dimensional (3D) constructs that structurally resemble tissues in our body. However, this approach is currently constrained by the limited control over multi-component deposition: the variable droplet ejection characteristics of different bioinks and dispensing units make synchronized printing very challenging. This invariably results in artificial tissues that lack the complexity and function of their native counterparts. By careful optimization of the printing parameters for two different bioink formulations, here we report the inkjet-based 3D-patterning of hydrogels according to relatively complex blueprints. 3D printing of bioinks containing living cells resulted in high-resolution, multi-component living constructs. Finally, we describe a sacrificial material approach to inkjet print perfuseable channels for improved long-term cultures of larger samples. We believe that this work provides a foundation for the generation of more complex 3D tissue models by inkjet printing.
Project description:Various incurable eye diseases in companion animals often result in phthisis bulbi and eye removal surgery. Currently, the evisceration method using silicone balls is useful in animals; however, it is not available to those with impaired cornea or severe ocular atrophy. Moreover, ocular implant and prostheses are not widely used because of the diversity in animal size and eye shape, and high manufacturing cost. Here, we produced low-cost and customized artificial eyes, including implant and prosthesis, using computer-aided design and three-dimensional (3D) printing technique. For 3D modeling, the size of the artificial eyes was optimized using B-mode ultrasonography. The design was exported to STL files, and then printed using polycaprolactone (PCL) for prosthesis and mixture of PCL and hydroxyapatite (HA) for ocular implant. The 3D printed artificial eyes could be produced in less than one and half hour. The prosthesis was painted using oil colors and biocompatible resin. Two types of eye removal surgery, including evisceration and enucleation, were performed using two beagle dogs, as a preliminary study. After the surgery, the dogs were clinically evaluated for 6 months and then histopathological evaluation of the implant was done. Ocular implant was biocompatible and host tissue ingrowth was induced after in vivo application. The custom-made prosthesis was cosmetically excellent. Although long-term clinical follow-up might be required, the use of 3D printed-customized artificial eyes may be beneficial for animals that need personalized artificial eye surgery.