Project description:Poor survival rates of patients with tumors arising from or disseminating into the brain are attributed to an inability to excise all tumor tissue (if operable), a lack of blood-brain barrier (BBB) penetration of chemotherapies/targeted agents, and an intrinsic tumor radio-/chemo-resistance. Ataxia-telangiectasia mutated (ATM) protein orchestrates the cellular DNA damage response (DDR) to cytotoxic DNA double-strand breaks induced by ionizing radiation (IR). ATM genetic ablation or pharmacological inhibition results in tumor cell hypersensitivity to IR. We report the primary pharmacology of the clinical-grade, exquisitely potent (cell IC50, 0.78 nM), highly selective [>10,000-fold over kinases within the same phosphatidylinositol 3-kinase-related kinase (PIKK) family], orally bioavailable ATM inhibitor AZD1390 specifically optimized for BBB penetration confirmed in cynomolgus monkey brain positron emission tomography (PET) imaging of microdosed 11C-labeled AZD1390 (Kp,uu, 0.33). AZD1390 blocks ATM-dependent DDR pathway activity and combines with radiation to induce G2 cell cycle phase accumulation, micronuclei, and apoptosis. AZD1390 radiosensitizes glioma and lung cancer cell lines, with p53 mutant glioma cells generally being more radiosensitized than wild type. In in vivo syngeneic and patient-derived glioma as well as orthotopic lung-brain metastatic models, AZD1390 dosed in combination with daily fractions of IR (whole-brain or stereotactic radiotherapy) significantly induced tumor regressions and increased animal survival compared to IR treatment alone. We established a pharmacokinetic-pharmacodynamic-efficacy relationship by correlating free brain concentrations, tumor phospho-ATM/phospho-Rad50 inhibition, apoptotic biomarker (cleaved caspase-3) induction, tumor regression, and survival. On the basis of the data presented here, AZD1390 is now in early clinical development for use as a radiosensitizer in central nervous system malignancies.
Project description:Oscillating field stimulation (OFS) is a potential method for treating spinal cord injury. Although it has been used in spinal cord injury (SCI) therapy in basic and clinical studies, its underlying mechanism and the correlation between its duration and nerve injury repair remain poorly understood. In this study, we established rat models of spinal cord contusion at T10 and then administered 12 weeks of OFS. The results revealed that effectively promotes the recovery of motor function required continuous OFS for more than 6 weeks. The underlying mechanism may be related to the effects of OFS on promoting axon regeneration, inhibiting astrocyte proliferation, and improving the linear arrangement of astrocytes. This study was approved by the Animal Experiments and Experimental Animal Welfare Committee of Capital Medical University (supplemental approval No. AEEI-2021-204) on July 26, 2021.
Project description:Although neurons in the adult mammalian CNS are inherently incapable of regeneration after injury, we previously showed that exogenous delivery of pigment epithelium-derived factor (PEDF), a 50-kDa neurotrophic factor (NTF), promoted adult retinal ganglion cell neuroprotection and axon regeneration. Here, we show that PEDF and other elements of the PEDF pathway are highly upregulated in dorsal root ganglion neurons (DRGN) from regenerating dorsal column (DC) injury paradigms when compared with non-regenerating DC injury models. Exogenous PEDF was neuroprotective to adult DRGN and disinhibited neurite outgrowth, whilst overexpression of PEDF after DC injury in vivo promoted significant DC axon regeneration with enhanced electrophysiological, sensory, and locomotor function. Our findings reveal that PEDF is a novel NTF for adult DRGN and may represent a therapeutically useful factor to promote functional recovery after spinal cord injury.
Project description:Promoting the combination of robust regeneration of damaged axons and synaptic reconnection of these growing axon populations with appropriate neuronal targets represents a major therapeutic goal following spinal cord injury (SCI). A key impediment to achieving this important aim includes an intrinsic inability of neurons to extend axons in adult CNS, particularly in the context of the chronically-injured spinal cord. We tested whether an inhibitory peptide directed against phosphatase and tensin homolog (PTEN: a central inhibitor of neuron-intrinsic axon growth potential) could restore inspiratory diaphragm function by reconnecting critical respiratory neural circuitry in a rat model of chronic cervical level 2 (C2) hemisection SCI. We found that systemic delivery of PTEN antagonist peptide 4 (PAP4) starting at 8 weeks after C2 hemisection promoted substantial, long-distance regeneration of injured bulbospinal rostral Ventral Respiratory Group (rVRG) axons into and through the lesion and back toward phrenic motor neurons (PhMNs) located in intact caudal C3-C5 spinal cord. Despite this robust rVRG axon regeneration, PAP4 stimulated only minimal recovery of diaphragm function. Furthermore, re-lesion through the hemisection site completely removed PAP4-induced functional improvement, demonstrating that axon regeneration through the lesion was responsible for this partial functional recovery. Interestingly, there was minimal formation of putative excitatory monosynaptic connections between regrowing rVRG axons and PhMN targets, suggesting that (1) limited rVRG-PhMN synaptic reconnectivity was responsible at least in part for the lack of a significant functional effect, (2) chronically-injured spinal cord presents an obstacle to achieving synaptogenesis between regenerating axons and post-synaptic targets, and (3) addressing this challenge is a potentially-powerful strategy to enhance therapeutic efficacy in the chronic SCI setting. In conclusion, our study demonstrates a non-invasive and transient pharmacological approach in chronic SCI to repair the critically-important neural circuitry controlling diaphragmatic respiratory function, but also sheds light on obstacles to circuit plasticity presented by the chronically-injured spinal cord.
Project description:With advances in genetic and imaging techniques, investigating axon regeneration after spinal cord injury in vivo is becoming more common in the literature. However, there are many issues to consider when using animal models of axon regeneration, including species, strains and injury models. No single particular model suits all types of experiments and each hypothesis being tested requires careful selection of the appropriate animal model. in this review, we describe several commonly-used animal models of axon regeneration in the spinal cord and discuss their advantages and disadvantages.
Project description:Impact statementSpinal cord injury (SCI) results in loss of tissue innervation below the injury. Spinal progenitors have a greater ability to repair the damage and can be injected into the injury, but their regenerative potential is hampered by their poor survival after transplantation. Biomaterials can create a cell delivery platform and generate a more hospitable microenvironment for the progenitors within the injury. In this work, polymeric bridges are used to deliver embryonic spinal progenitors to the injury, resulting in increased progenitor survival and subsequent regeneration and functional recovery, thus demonstrating the importance of combined therapeutic approaches for SCI.
Project description:Spinal cord injury (SCI) usually results in permanent functional impairment and is considered a worldwide medical problem. However, both motor and sensory functions can spontaneously recover to varying extents in humans and animals with incomplete SCI. This study observed a significant spontaneous hindlimb locomotor recovery in Sprague-Dawley rats at four weeks after post-right-side spinal cord hemisection at thoracic 8 (T8). To verify whether the above spontaneous recovery derives from the ipsilateral axonal or neuronal regeneration to reconnect the lesion site, we resected either the scar tissue or right side T7 spinal cord at five weeks post-T8 hemisected injury. The results showed that the spontaneously achieved right hindlimb locomotor function had little change after resection. Furthermore, when T7 left hemisection was performed five weeks after the initial injury, the spontaneously achieved right hindlimb locomotor function was dramatically abolished. A similar result could also be observed when T7 transection was performed after the initial hemisection. The results indicated that it might be the contralateral axonal remolding rather than the ipsilateral axonal or neuronal regeneration beyond the lesion site responsible for the spontaneous hindlimb locomotor recovery. The immunostaining analyses and corticospinal tracts (CSTs) tracing results confirmed this hypothesis. We detected no substantial neuronal and CST regeneration throughout the lesion site; however, significantly more CST fibers were observed to sprout from the contralateral side at the lumbar 4 (L4) spinal cord in the hemisection model rats than in intact ones. In conclusion, this study verified that contralateral CST sprouting, but not ipsilateral CST or neuronal regeneration, is primarily responsible for the spontaneous locomotor recovery in hemisection SCI rats.
Project description:The transplantation of autologous Schwann cells (SCs) to repair the injured spinal cord is currently being evaluated in a clinical trial. In support, this study determined properties of spinal cord/SC bridge interfaces that enabled regenerated brainstem axons to cross them, possibly leading to improvement in rat hindlimb movement. Fluid bridges of SCs and Matrigel were placed in complete spinal cord transections. Compared to pregelled bridges of SCs and Matrigel, they improved regeneration of brainstem axons across the rostral interface. The regenerating brainstem axons formed synaptophysin(+) bouton-like terminals and contacted MAP2A(+) dendrites at the caudal interface. Brainstem axon regeneration was directly associated with glial fibrillary acidic protein (GFAP(+)) astrocyte processes that elongated into the SC bridge. Electron microscopy revealed that axons, SCs, and astrocytes were enclosed together within tunnels bounded by a continuous basal lamina. Neuroglycan (NG2) expression was associated with these tunnels. One week after injury, the GFAP(+) processes coexpressed nestin and brain lipid-binding protein, and the tips of GFAP(+)/NG2(+) processes extended into the bridges together with the regenerating brainstem axons. Both brainstem axon regeneration and number of GFAP(+) processes in the bridges correlated with improvement in hindlimb locomotion. Following SCI, astrocytes may enter a reactive state that prohibits axon regeneration. Elongation of astrocyte processes into SC bridges, however, and formation of NG2(+) tunnels enable brainstem axon regeneration and improvement in function. It is important for spinal cord repair to define conditions that favor elongation of astrocytes into lesions/transplants.
Project description:PurposeLimited effective treatments are currently available for central nervous system (CNS) metastasis (CM). This is largely driven by the inability of current therapeutics to penetrate the blood brain barrier (BBB) and the lack of preclinical models for testing new therapies. Here we study the efficacy of AZD1390, a BBB penetrating ataxia-telangiectasia mutated inhibitor, as a radiosensitizer for breast cancer CM treatment.Experimental designThree patient-derived xenograft (PDX) tumors including 2 HER2+ and 1 triple-negative breast cancer harboring DNA damage response (DDR) gene mutations, were implanted subcutaneously in the flank of mice to assess tumor growth inhibition by AZD1390 combined with radiation. Animal survival was further assessed by implanting the best responding PDX model orthotopically in the brain.ResultsPretreatment with AZD1390 followed by radiation therapy inhibited growth of PDX tumors implanted in the flank, and improved survival in orthotopic models with average survival of 222 days compared with 123 days in controls. Administration of AZD1390 posttreatment for 21 days had no further benefits. While the combination therapy resulted in sustained tumor inhibition, sporadic regrowth was observed in some mice 50 to 100 days posttreatment in all models. Gene expression comparing these tumors with complete responders demonstrated changes in upregulation of oncogenic proteins, which are potential drivers of tumor growth after treatment.ConclusionsOur results demonstrate that AZD1390 effectively sensitizes breast cancer CM to radiation therapy in DDR mutant tumors. This study demonstrates the potential of using AZD1390 as a novel therapeutic agent for patients with breast cancer CM.
Project description:Transected axons fail to regrow across anatomically complete spinal cord injuries (SCI) in adults. Diverse molecules can partially facilitate or attenuate axon growth during development or after injury1-3, but efficient reversal of this regrowth failure remains elusive4. Here we show that three factors that are essential for axon growth during development but are attenuated or lacking in adults-(i) neuron intrinsic growth capacity2,5-9, (ii) growth-supportive substrate10,11 and (iii) chemoattraction12,13-are all individually required and, in combination, are sufficient to stimulate robust axon regrowth across anatomically complete SCI lesions in adult rodents. We reactivated the growth capacity of mature descending propriospinal neurons with osteopontin, insulin-like growth factor 1 and ciliary-derived neurotrophic factor before SCI14,15; induced growth-supportive substrates with fibroblast growth factor 2 and epidermal growth factor; and chemoattracted propriospinal axons with glial-derived neurotrophic factor16,17 delivered via spatially and temporally controlled release from biomaterial depots18,19, placed sequentially after SCI. We show in both mice and rats that providing these three mechanisms in combination, but not individually, stimulated robust propriospinal axon regrowth through astrocyte scar borders and across lesion cores of non-neural tissue that was over 100-fold greater than controls. Stimulated, supported and chemoattracted propriospinal axons regrew a full spinal segment beyond lesion centres, passed well into spared neural tissue, formed terminal-like contacts exhibiting synaptic markers and conveyed a significant return of electrophysiological conduction capacity across lesions. Thus, overcoming the failure of axon regrowth across anatomically complete SCI lesions after maturity required the combined sequential reinstatement of several developmentally essential mechanisms that facilitate axon growth. These findings identify a mechanism-based biological repair strategy for complete SCI lesions that could be suitable to use with rehabilitation models designed to augment the functional recovery of remodelling circuits.