Project description:The SARS-CoV-2 Delta (B.1.617.2) variant is capable of infecting vaccinated persons. An open question remains as to whether deficiencies in specific vaccine-elicited immune responses result in susceptibility to vaccine breakthrough infection. We investigated 55 vaccine breakthrough infection cases (mostly Delta) in Singapore, comparing them against 86 vaccinated close contacts who did not contract infection. Vaccine breakthrough cases showed lower memory B cell frequencies against SARS-CoV-2 receptor binding domain (RBD). Compared to plasma antibodies, antibodies secreted by memory B cells retained a higher fraction of neutralizing properties against the Delta variant. Inflammatory cytokines including IL-1β and TNF were lower in vaccine breakthrough infections than primary infection of similar disease severity, underscoring the usefulness of vaccination in preventing inflammation. This report highlights the importance of memory B cells against vaccine breakthrough, and suggests that lower memory B cell levels may be a correlate of risk for Delta vaccine breakthrough infection.
Project description:We investigated the kinetics, breadth, magnitude, and level of cross-reactivity of IgG antibodies against SARS-CoV-2 and heterologous seasonal (HCoV-NL63, -229E, -OC43 and -HKU1) and epidemic coronaviruses (SARS-CoV, hCoV-MERS) at the clonal level in patients with mild or severe COVID-19 as well as in disease control patients. We assessed IgG antibody reactivity to nucleocapsid and spike antigens using protein microarray. A cutoff was set at the average plus 3 times the SD of 20 nonreactive cultures with a minimum MFI of 1000.
Project description:Background: The emergence of new COVID-19 variants of concern coupled with a global inequity in vaccine access and distribution has prompted many public health authorities to circumvent the vaccine shortages by altering vaccination protocols and prioritizing persons at high risk. Individuals with previous COVID-19 infection may not have been prioritized due to existing humoral immunity. Objective: We aimed to study the association between previous COVID-19 infection and antibody levels after COVID-19 vaccination. Methods: A serological analysis to measure SARS-CoV-2 immunoglobulin (Ig)G, IgA, and neutralizing antibodies was performed on individuals who received one or two doses of either BNT162b2 or ChAdOx1 vaccines in Kuwait. A Student t-test was performed and followed by generalized linear regression models adjusted for individual characteristics and comorbidities were fitted to compare the average levels of IgG and neutralizing antibodies between vaccinated individuals with and without previous COVID-19 infection. Results: A total of 1,025 individuals were recruited. The mean levels of IgG, IgA, and neutralizing antibodies were higher in vaccinated subjects with previous COVID-19 infections than in those without previous infection. Regression analysis showed a steeper slope of decline for IgG and neutralizing antibodies in vaccinated individuals without previous COVID-19 infection compared to those with previous COVID-19 infection. Conclusion: Previous COVID-19 infection appeared to elicit robust and sustained levels of SARS-CoV-2 antibodies in vaccinated individuals. Given the inconsistent supply of COVID-19 vaccines in many countries due to inequities in global distribution, our results suggest that even greater efforts should be made to vaccinate more people, especially individuals without previous COVID-19 infection.
Project description:The pathophysiology of COVID-19-associated thrombosis seems to be multifactorial. We hypothesized that COVID-19 is accompanied by procoagulant platelets with subsequent alteration of the coagulation system. We investigated depolarization of mitochondrial inner transmembrane potential (ΔΨm), cytosolic calcium (Ca2+) concentration, and phosphatidylserine (PS) externalization. Platelets from COVID-19 patients in the intensive care unit (ICU; n = 21) showed higher ΔΨm depolarization, cytosolic Ca2+, and PS externalization compared with healthy controls (n = 18) and non-ICU COVID-19 patients (n = 4). Moreover, significant higher cytosolic Ca2+ and PS were observed compared with a septic ICU control group (ICU control; n = 5). In the ICU control group, cytosolic Ca2+ and PS externalization were comparable with healthy controls, with an increase in ΔΨm depolarization. Sera from COVID-19 patients in the ICU induced a significant increase in apoptosis markers (ΔΨm depolarization, cytosolic Ca2+, and PS externalization) compared with healthy volunteers and septic ICU controls. Interestingly, immunoglobulin G fractions from COVID-19 patients induced an Fcγ receptor IIA-dependent platelet apoptosis (ΔΨm depolarization, cytosolic Ca2+, and PS externalization). Enhanced PS externalization in platelets from COVID-19 patients in the ICU was associated with increased sequential organ failure assessment score (r = 0.5635) and D-dimer (r = 0.4473). Most importantly, patients with thrombosis had significantly higher PS externalization compared with those without. The strong correlations between markers for apoptosic and procoagulant platelets and D-dimer levels, as well as the incidence of thrombosis, may indicate that antibody-mediated procoagulant platelets potentially contributes to sustained increased thromboembolic risk in ICU COVID-19 patients.
Project description:The impact of COVID-19 varies markedly, not only between individual patients but also between different populations. We hypothesised that differences in human leukocyte antigen (HLA) genes might influence this variation. Using next generation sequencing, we analysed the class I and class II classical HLA genes of 147 individuals of European descent experiencing variable clinical outcomes following COVID-19 infection. Forty-nine of these patients were admitted to hospital with severe respiratory disease. They had no significant pre-existing comorbidities. We compared the results to those obtained from a group of 69 asymptomatic hospital workers who evidence of COVID exposure based on blood antibody testing. Allele frequencies in both the severe and asymptomatic groups were compared to local and national healthy controls with adjustments made for age and sex. With the inclusion of hospital staff who had reported localised symptoms only (limited to loss of smell/taste, n = 13) or systemic symptoms not requiring hospital treatment (n = 16), we carried out ordinal logistic regression modelling to determine the relative influence of age, BMI, sex and the presence of specific HLA genes on symptomatology. We found a significant difference in the allele frequency of HLA-DRB1*04:01 in the severe patient compared to the asymptomatic staff group (5.1% vs. 16.7%, P = .003 after adjustment for age and sex). There was a significantly lower frequency of the haplotype DQA1*01:01-DQB1*05:01-DRB1*01:01 in the asymptomatic group compared to the background population (P = .007). Ordinal logistic regression modelling confirmed the significant influence of DRB1*04:01 on the clinical severity of COVID-19 observed in the cohorts. These alleles are found in greater frequencies in the North Western European population. This regional study provides evidence that HLA genotype influences clinical outcome in COVID-19 infection. Validation studies must take account of the complex genetic architecture of the immune system across different geographies and ethnicities.
Project description:RNA-Seq was used to study changes in gene expression in saliva samples from 266 human subjects after SARS-COV-2 infection, vaccination, or combined infection and vaccination (breakthrough). Approximately equal numbers of males and females, matched for age, were profiled after subjects tested positive for COVID-19 by PCR and sequencing of the variant. In addition to samples from uninfected controls with and without vaccination, samples from infected subjects with and without vaccination that represent eight major SARS-COV-2 lineages are included: epsilon, iota, alpha, delta, omicron BA.1, omicron BA.2, omicron BA.4, and omicron BA.5. Stranded single-end sequencing was performed using standard Illumina protocols. Reads were quantified to hg38 human transcriptome using Salmon after adapter trimming. Quantified reads were filtered to remove features with fewer than one count in 80% of the samples, and normalized using TPM, followed by quantile and log2 transformation.
Project description:SARS-CoV-2 infection results in different outcomes ranging from asymptomatic infection to mild or severe disease and death. Reasons for this diversity of outcome include differences in challenge dose, age, gender, comorbidity and host genomic variation. Human leukocyte antigen (HLA) polymorphisms may influence immune response and disease outcome. We investigated the association of HLAII alleles with case definition symptomatic COVID-19, virus-specific antibody and T-cell immunity. A total of 1364 UK healthcare workers (HCWs) were recruited during the first UK SARS-CoV-2 wave and analysed longitudinally, encompassing regular PCR screening for infection, symptom reporting, imputation of HLAII genotype and analysis for antibody and T-cell responses to nucleoprotein (N) and spike (S). Of 272 (20%) HCW who seroconverted, the presence of HLA-DRB1*13:02 was associated with a 6·7-fold increased risk of case definition symptomatic COVID-19. In terms of immune responsiveness, HLA-DRB1*15:02 was associated with lower nucleocapsid T-cell responses. There was no association between DRB1 alleles and anti-spike antibody titres after two COVID vaccine doses. However, HLA DRB1*15:01 was associated with increased spike T-cell responses following both first and second dose vaccination. Trial registration: NCT04318314 and ISRCTN15677965.