Unknown

Dataset Information

0

Parasitic Light Absorption, Rate Laws and Heterojunctions in the Photocatalytic Oxidation of Arsenic(III) Using Composite TiO2 /Fe2 O3.


ABSTRACT: Composite photocatalyst-adsorbents such as TiO2 /Fe2 O3 are promising materials for the one-step treatment of arsenite contaminated water. However, no previous study has investigated how coupling TiO2 with Fe2 O3 influences the photocatalytic oxidation of arsenic(III). Herein, we develop new hybrid experiment/modelling approaches to study light absorption, charge carrier behaviour and changes in the rate law of the TiO2 /Fe2 O3 system, using UV-Vis spectroscopy, transient absorption spectroscopy (TAS), and kinetic analysis. Whilst coupling TiO2 with Fe2 O3 improves total arsenic removal by adsorption, oxidation rates significantly decrease (up to a factor of 60), primarily due to the parasitic absorption of light by Fe2 O3 (88 % of photons at 368 nm) and secondly due to changes in the rate law from disguised zero-order kinetics to first-order kinetics. Charge transfer across this TiO2 -Fe2 O3 heterojunction is not observed. Our study demonstrates the first application of a multi-adsorbate surface complexation model (SCM) towards describing As(III) oxidation kinetics which, unlike Langmuir-Hinshelwood kinetics, includes the competitive adsorption of As(V). We further highlight the importance of parasitic light absorption and catalyst fouling when designing heterogeneous photocatalysts for As(III) remediation.

SUBMITTER: Bullen JC 

PROVIDER: S-EPMC9306794 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9027728 | biostudies-literature
| S-EPMC5753051 | biostudies-literature
| S-EPMC8170081 | biostudies-literature
| S-EPMC7770802 | biostudies-literature
| S-EPMC5292731 | biostudies-literature
| S-EPMC8328079 | biostudies-literature
| S-EPMC9565318 | biostudies-literature
| S-EPMC7738548 | biostudies-literature
| S-EPMC9374679 | biostudies-literature
| S-EPMC9830655 | biostudies-literature