Project description:The occurrence of polyploidy in land plant evolution has led to an acceleration of genome modifications relative to other crown eukaryotes and is correlated with key innovations in plant evolution. Extensive genome resources provide for relating genomic changes to the origins of novel morphological and physiological features of plants. Ancestral gene contents for key nodes of the plant family tree are inferred. Pervasive polyploidy in angiosperms appears likely to be the major factor generating novel angiosperm genes and expanding some gene families. However, most gene families lose most duplicated copies in a quasi-neutral process, and a few families are actively selected for single-copy status. One of the great challenges of evolutionary genomics is to link genome modifications to speciation, diversification and the morphological and/or physiological innovations that collectively compose biodiversity. Rapid accumulation of genomic data and its ongoing investigation may greatly improve the resolution at which evolutionary approaches can contribute to the identification of specific genes responsible for particular innovations. The resulting, more 'particulate' understanding of plant evolution, may elevate to a new level fundamental knowledge of botanical diversity, including economically important traits in the crop plants that sustain humanity.
Project description:While angiosperm clocks can be described as an intricate network of interlocked transcriptional feedback loops, clocks of green algae have been modelled as a loop of only two genes. To investigate the transition from a simple clock in algae to a complex one in angiosperms, we performed an inventory of circadian clock genes in bryophytes and charophytes. Additionally, we performed functional characterization of putative core clock genes in the liverwort Marchantia polymorpha and the hornwort Anthoceros agrestis. Phylogenetic construction was combined with studies of spatiotemporal expression patterns and analysis of M. polymorpha clock gene mutants. Homologues to core clock genes identified in Arabidopsis were found not only in bryophytes but also in charophytes, albeit in fewer copies. Circadian rhythms were detected for most identified genes in M. polymorpha and A. agrestis, and mutant analysis supports a role for putative clock genes in M. polymorpha. Our data are in line with a recent hypothesis that adaptation to terrestrial life occurred earlier than previously expected in the evolutionary history of charophyte algae. Both gene duplication and acquisition of new genes was important in the evolution of the plant circadian clock, but gene loss has also contributed to shaping the clock of bryophytes.
Project description:Establishing the timescale of early land plant evolution is essential for testing hypotheses on the coevolution of land plants and Earth's System. The sparseness of early land plant megafossils and stratigraphic controls on their distribution make the fossil record an unreliable guide, leaving only the molecular clock. However, the application of molecular clock methodology is challenged by the current impasse in attempts to resolve the evolutionary relationships among the living bryophytes and tracheophytes. Here, we establish a timescale for early land plant evolution that integrates over topological uncertainty by exploring the impact of competing hypotheses on bryophyte-tracheophyte relationships, among other variables, on divergence time estimation. We codify 37 fossil calibrations for Viridiplantae following best practice. We apply these calibrations in a Bayesian relaxed molecular clock analysis of a phylogenomic dataset encompassing the diversity of Embryophyta and their relatives within Viridiplantae. Topology and dataset sizes have little impact on age estimates, with greater differences among alternative clock models and calibration strategies. For all analyses, a Cambrian origin of Embryophyta is recovered with highest probability. The estimated ages for crown tracheophytes range from Late Ordovician to late Silurian. This timescale implies an early establishment of terrestrial ecosystems by land plants that is in close accord with recent estimates for the origin of terrestrial animal lineages. Biogeochemical models that are constrained by the fossil record of early land plants, or attempt to explain their impact, must consider the implications of a much earlier, middle Cambrian-Early Ordovician, origin.
Project description:Exocyst is an evolutionarily conserved vesicle tethering complex functioning especially in the last stage of exocytosis. Homologs of its eight canonical subunits - Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84 - were found also in higher plants and confirmed to form complexes in vivo, and to participate in cell growth including polarized expansion of pollen tubes and root hairs. Here we present results of a phylogenetic study of land plant exocyst subunits encoded by a selection of completely sequenced genomes representing a variety of plant, mostly angiosperm, lineages. According to their evolution histories, plant exocyst subunits can be divided into several groups. The core subunits Sec6, Sec8, and Sec10, together with Sec3 and Sec5, underwent few, if any fixed duplications in the tracheophytes (though they did amplify in the moss Physcomitrella patens), while others form larger families, with the number of paralogs ranging typically from two to eight per genome (Sec15, Exo84) to several dozens per genome (Exo70). Most of the diversity, which can be in some cases traced down to the origins of land plants, can be attributed to the peripheral subunits Exo84 and, in particular, Exo70. As predicted previously, early land plants (including possibly also the Rhyniophytes) encoded three ancestral Exo70 paralogs which further diversified in the course of land plant evolution. Our results imply that plants do not have a single "Exocyst complex" - instead, they appear to possess a diversity of exocyst variants unparalleled among other organisms studied so far. This feature might perhaps be directly related to the demands of building and maintenance of the complicated and spatially diverse structures of the endomembranes and cell surfaces in multicellular land plants.
Project description:Hornworts, liverworts and mosses are three early diverging clades of land plants, and together comprise the bryophytes. Here, we report the draft genome sequence of the hornwort Anthoceros angustus. Phylogenomic inferences confirm the monophyly of bryophytes, with hornworts sister to liverworts and mosses. The simple morphology of hornworts correlates with low genetic redundancy in plant body plan, while the basic transcriptional regulation toolkit for plant development has already been established in this early land plant lineage. Although the Anthoceros genome is small and characterized by minimal redundancy, expansions are observed in gene families related to RNA editing, UV protection and desiccation tolerance. The genome of A. angustus bears the signatures of horizontally transferred genes from bacteria and fungi, in particular of genes operating in stress-response and metabolic pathways. Our study provides insight into the unique features of hornworts and their molecular adaptations to live on land.
Project description:Ferns are the closest sister group to all seed plants, yet little is known about their genomes other than that they are generally colossal. Here, we report on the genomes of Azolla filiculoides and Salvinia cucullata (Salviniales) and present evidence for episodic whole-genome duplication in ferns-one at the base of 'core leptosporangiates' and one specific to Azolla. One fern-specific gene that we identified, recently shown to confer high insect resistance, seems to have been derived from bacteria through horizontal gene transfer. Azolla coexists in a unique symbiosis with N2-fixing cyanobacteria, and we demonstrate a clear pattern of cospeciation between the two partners. Furthermore, the Azolla genome lacks genes that are common to arbuscular mycorrhizal and root nodule symbioses, and we identify several putative transporter genes specific to Azolla-cyanobacterial symbiosis. These genomic resources will help in exploring the biotechnological potential of Azolla and address fundamental questions in the evolution of plant life.
Project description:A crucial evolutionary change in vertebrate history was the Palaeozoic (Devonian 419–359 million years ago) water-to-land transition, allowed by key morphological and physiological modifications including the acquisition of lungs. Nonetheless, the origin and early evolution of vertebrate lungs remain highly controversial, particularly whether the ancestral state was paired or unpaired. Due to the rarity of fossil soft tissue preservation, lung evolution can only be traced based on the extant phylogenetic bracket. Here we investigate, for the first time, lung morphology in extensive developmental series of key living lunged osteichthyans using synchrotron x-ray microtomography and histology. Our results shed light on the primitive state of vertebrate lungs as unpaired, evolving to be truly paired in the lineage towards the tetrapods. The water-to-land transition confronted profound physiological challenges and paired lungs were decisive for increasing the surface area and the pulmonary compliance and volume, especially during the air-breathing on land. eLife digest All life on Earth started out under water. However, around 400 million years ago some vertebrates, such as fish, started developing limbs and other characteristics that allowed them to explore life on land. One of the most pivotal features to evolve was the lungs, which gave vertebrates the ability to breathe above water. Most land-living vertebrates, including humans, have two lungs which sit on either side of their chest. The lungs extract oxygen from the atmosphere and transfer it to the bloodstream in exchange for carbon dioxide which then gets exhaled out in to the atmosphere. How this important organ first evolved is a hotly debated topic. This is largely because lung tissue does not preserve well in fossils, making it difficult to trace how the lungs of vertebrates changed over the course of evolution. To overcome this barrier, Cupello et al. compared the lungs of living species which are crucial to understand the early stages of the water-to-land transition. This included four species of lunged bony fish which breathe air at the water surface, and a four-legged salamander that lives on land. Cupello et al. used a range of techniques to examine how the lungs of the bony fish and salamander changed shape during development. The results suggested that the lungs of vertebrates started out as a single organ, which became truly paired later in evolution once vertebrates started developing limbs. This anatomical shift increased the surface area available for exchanging oxygen and carbon dioxide so that vertebrates could breathe more easily on land. These findings provide new insights in to how the lung evolved into the paired structure found in most vertebrates alive today. It likely that this transition allowed vertebrates to fully adapt to breathing above water, which may explain why this event only happened once over the course of evolution.
Project description:Plant functional groups (PFGs) have been increasingly introduced in land degradation (LD) studies; however, it is unclear whether PFGs can indicate LD. Here, we selected five different degraded lands (i.e., pristine and, lightly, moderately, seriously and extremely degraded) higher than 4650?m on the Tibetan Plateau. In addition, we investigated floristic metrics (i.e., composition, height, cover, biomass and abundance) and soil conditions (e.g., moisture, temperature and gravel ratio) by sampling 225 subplots. We found 75 vascular plants that consist of sedges (Cyperaceae), grasses (Gramineae), legumes, forbs, cushion plants and shrubs PFGs. LD dramatically deteriorated soil conditions, vegetation cover and productivity, however, improved species diversity. Moreover, cover and productivity showed a hump-shaped relationship with LD intensification in legumes, grasses and forbs and decreased mainly in sedges. Productivity increased considerably in cushion plants and shrubs on the extremely degraded land. Major characteristics of the LD process were the replacement of Kobresia spp. by Carex spp. in sedges; cushion plants significantly expanded, and shrubs appeared on the extremely degraded land. We, thus, confirm that the PFG variations are likely to indicate a LD process and demonstrate ways of using PFGs to assess LD status on the Tibetan Plateau.