Fetal glucocorticoid exposure leads to sex-specific changes in drug-transporter function at the blood-brain barrier in juvenile guinea pigs.
Ontology highlight
ABSTRACT: Antenatal synthetic glucocorticoids (sGCs) are a life-saving treatment in managing pre-term birth. However, off-target effects of sGCs can impact blood-brain barrier (BBB) drug transporters essential for fetal brain protection, including P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (BCRP/Abcg2). We hypothesized that maternal antenatal sGC treatment modifies BBB function in juvenile offspring in a sex-dependent manner. Thus, the objective of this study was to determine the long-term impact of a single or multiple courses of betamethasone on P-gp/Abcb1 and BCRP/Abcg2 expression and function at the BBB. Pregnant guinea pigs (N = 42) received 3 courses (gestation days (GDs) 40, 50, and 60) or a single course (GD50) of betamethasone (1 mg/kg) or vehicle (saline). Cerebral microvessels and brain endothelial cells (BEC) were collected from the post-natal day (PND) 14 offspring to measure protein, gene expression, and function of the drug transporters P-gp/Abcb1 and BCRP/Abcg2. P-gp protein expression was decreased (p < .05) in microvessels from male offspring that had been exposed to multiple courses and a single course of sGC, in utero. Multiple courses of sGC resulted in a significant decrease in P-gp function in BECs from males (p < .05), but not females. There was a very strong trend for increased P-gp function in males compared to females (p = .055). Reduced P-gp expression and function at the BBB of young male offspring following multiple prenatal sGC exposures, is clinically relevant as many drugs administered postnatally are P-gp substrates. These novel sex differences in drug transporter function may underlie potential sexual dimorphism in drug sensitivity and toxicity in the newborn and juvenile brain.
SUBMITTER: Eng ME
PROVIDER: S-EPMC9311705 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA