A meta-analysis of the relation between hippocampal volume and memory ability in typically developing children and adolescents.
Ontology highlight
ABSTRACT: Memory is supported by a network of brain regions, with the hippocampus serving a critical role in this cognitive process. Previous meta-analyses on the association between hippocampal structure and memory have largely focused on adults. Multiple studies have since suggested that hippocampal volume is related to memory performance in children and adolescents; however, the strength and direction of this relation varies across reports, and thus, remains unclear. To further understand this brain-behavior relation, we conducted a meta-analysis to investigate the association between hippocampal volume (assessed as total volume) and memory during typical development. Across 25 studies and 61 memory outcomes with 1357 participants, results showed a small, but significant, positive association between total hippocampal volume and memory performance. Estimates of the variability across studies in the relation between total volume and memory were not explained by differences in memory task type (delayed vs. immediate; relational vs. nonrelational), participant age range, or the method of normalization of hippocampal volumes. Overall, findings suggest that larger total hippocampal volume relates to better memory performance in children and adolescents and that this relation is similar across the memory types and age ranges assessed. To facilitate enhanced generalization across studies in the future, we discuss considerations for the field moving forward.
Project description:Reading is explicitly taught and foreshadows academic and vocational success. Studies comparing typical readers to those with developmental dyslexia have identified anatomical brain differences in bilateral temporo-parietal cortex, left temporo-occipital cortex, and bilateral cerebellum. Yet, it is unclear whether linear relationships exist between these brain structures and single real word reading ability in the general population. If dyslexia represents the lower end of the normal continuum, then relationships between gray matter volume (GMV) and reading ability would exist for all reading levels. Our study examined this question using voxel-based morphometry in a large sample (n?=?404) of typically developing participants aged 6-22 derived from the NIH normative database. We tested correlations between individual GMV and single word reading and found none. After dividing this sample into groups based on age and on sex, we only found results in the group aged 15-22: positive correlations between GMV in left fusiform gyrus and reading, driven by females; and in right superior temporal gyrus in males. Multiple regressions also yielded no results, demonstrating that there is no general linear relationship between GMV and single real word reading ability. This provides an important context by which to interpret findings of GMV differences in dyslexia.
Project description:The Val66Met polymorphism of brain-derived neurotrophic factor (BDNF) is associated with psychiatric disorders and regional gray matter volume (rGMV) in adults. However, the relationship between BDNF and rGMV in children has not been clarified. In this 3-year cross-sectional/longitudinal (2 time points) study, we investigated the effects of BDNF genotypes on rGMV in 185 healthy Japanese children aged 5.7-18.4 using magnetic resonance imaging (MRI) and voxel-based morphometry (VBM) analyses. We found that the volume of the right cuneus in Met homozygotes (Met/Met) was greater than in Val homozygotes (Val/Val) in both exams, and the left insula and left ventromedial prefrontal cortex volumes were greater in Val homozygotes versus Met homozygotes in Exam l. In addition, Met homozygous subjects exhibited higher processing speed in intelligence indices than Val homozygotes and Val/Met heterozygotes at both time points. Longitudinal analysis showed that the left temporoparietal junction volume of Val/Met heterozygotes increased more substantially over the 3-year study period than in Val homozygotes, and age-related changes were observed for the Val/Met genotype. Our findings suggest that the presence of 2 Met alleles may have a positive effect on rGMV at the developmental stages analyzed in this study.
Project description:The main objective of this study was to investigate the impact of prenatal and early postnatal stress on hippocampal volume in young adulthood. In sharp contrast to numerous results in animal models, our data from a neuroimaging follow-up (n = 131) of a community-based birth cohort from the Czech Republic (European Longitudinal Study of Pregnancy and Childhood) showed that in typically developing young adults, hippocampal volume was not associated with birth weight, stressful life events during the prenatal or early postnatal period, or dysregulated mood and wellbeing in the mother during the early postnatal period. Interestingly, mother's anxiety/co-dependence during the first weeks after birth did show long-lasting effects on the hippocampal volume in young adult offspring irrespective of sex. Further analyses revealed that these effects were subfield-specific; present in CA1, CA2/3, CA4, GC-DG, subiculum, molecular layer, and HATA, hippocampal subfields identified by translational research as most stress- and glucocorticoid-sensitive, but not in the remaining subfields. Our findings provide evidence that the type of early stress is critical when studying its effects on the human brain.
Project description:Visuospatial processing is a cognitive function that is critical to navigating one's surroundings and begins to develop during infancy. Extensive research has examined visuospatial processing in adults, but far less work has investigated how visuospatial processing and the underlying neurophysiology changes from childhood to early adolescence, which is a critical period of human development that is marked by the onset of puberty. In the current study, we examined behavioral performance and the oscillatory dynamics serving visuospatial processing using magnetoencephalography (MEG) in a cohort of 70 children and young adolescents aged 8-15 years. All participants performed a visuospatial processing task during MEG, and the resulting oscillatory responses were imaged using a beamformer and probed for developmental and sex-related differences. Our findings indicated that reaction time on the task was negatively correlated with age, and that the amplitude of theta oscillations in the medial occipital cortices increased with age. Significant sex-by-age interactions were also detected, with female participants exhibiting increased theta oscillatory activity in the right prefrontal cortex with increasing age, while male participants exhibited theta increases in the left parietal lobe/left precuneus and left supplementary motor area with increasing age. These data indicate that different nodes of the visuospatial processing network develop earlier in males compared to females (and vice versa) in this age range, which may have major implications for the developmental trajectory of behavioral performance and executive function more generally during the transition through puberty.
Project description:MET receptor tyrosine kinase (MET) has been proposed as a candidate risk gene for autism spectrum disorder (ASD) based on associations between MET polymorphisms and ASD diagnosis, as well as evidence from animal studies that MET protein may regulate early development of cortical regions implicated in the neurobiology of ASD. The relevance of differences in MET signaling for human cortical development remains unexamined, however. We sought to address this issue by relating genotype at a functional single nucleotide polymorphism within the MET promoter (rs1858830, G→C) to in vivo measures of cortical thickness (CT) development derived from 222 healthy children and adolescents with 514 longitudinally acquired structural magnetic resonance imaging brain scans between ages 9 and 22 years. We identified a statistically significant, developmentally fixed, and stepwise CT reduction with increasing C allele dose in superior and middle temporal gyri, ventral precentral and postcentral gyri, and anterior cingulate bilaterally, and in the right frontopolar cortex. We were also able to demonstrate that mean CT within these cortical regions showed a statistically significant reduction with increasing scores on a continuous measure of autistic traits (the Social Responsiveness Scale). The cortical regions highlighted by our analyses are not only established areas of MET expression during prenatal life but are also key components of the "social brain" that have frequently shown structural and functional abnormalities in autism. Our results suggest that genetic differences in the MET gene may influence the development of cortical systems implicated in the neurobiology of ASD.
Project description:Disrupted-in-schizophrenia-1 (DISC1), contains two common non-synonymous single-nucleotide polymorphisms (SNPs)--Leu607Phe and Ser704Cys--that modulate (i) facets of DISC1 molecular functioning important for cortical development, (ii) fronto-temporal cortical anatomy in adults and (iii) risk for diverse psychiatric phenotypes that often emerge during childhood and adolescence, and are associated with altered fronto-temporal cortical development. It remains unknown, however, if Leu607Phe and Ser704Cys influence cortical maturation before adulthood, and whether each SNP shows unique or overlapping effects. Therefore, we related genotype at Leu607Phe and Ser704Cys to cortical thickness (CT) in 255 typically developing individuals aged 9-22 years on whom 598 magnetic resonance imaging brain scans had been acquired longitudinally. Rate of cortical thinning varied with DISC1 genotype. Specifically, the rate of cortical thinning was attenuated in Phe-carrier compared with Leu-homozygous groups (in bilateral superior frontal and left angular gyri) and accelerated in Ser-homozygous compared with Cys-carrier groups (in left anterior cingulate and temporal cortices). Both SNPs additively predicted fixed differences in right lateral temporal CT, which were maximal between Phe-carrier/Ser-homozygous (thinnest) vs Leu-homozygous/Cys-carrier (thickest) groups. Leu607Phe and Ser704Cys genotype interacted to predict the rate of cortical thinning in right orbitofrontal, middle temporal and superior parietal cortices, wherein a significantly reduced rate of CT loss was observed in Phe-carrier/Cys-carrier participants only. Our findings argue for further examination of Leu607Phe and Ser704Cys interactions at a molecular level, and suggest that these SNPs might operate (in concert with other genetic and environmental factors) to shape risk for diverse phenotypes by impacting on the early maturation of fronto-temporal cortices.
Project description:Anxiety is a risk factor for many adverse neuropsychiatric and socioeconomic outcomes, and has been linked to functional and structural changes in the ventromedial prefrontal cortex (VMPFC). However, the nature of these differences, as well as how they develop in children and adolescents, remains poorly understood. More effective interventions to minimize the negative consequences of anxiety require better understanding of its neurobiology in children. Recent research suggests that structural imaging studies may benefit from clearly delineating between cortical surface area and thickness when examining these associations, as these distinct cortical phenotypes are influenced by different cellular mechanisms and genetic factors. The present study examined relationships between cortical surface area and thickness of the VMPFC and a self-report measure of anxiety (SCARED-R) in 287 youths aged 7-20 years from the Pediatric Imaging, Neurocognition, and Genetics (PING) study. Age and gender interactions were examined for significant associations in order to test for developmental differences. Cortical surface area and thickness were also examined simultaneously to determine whether they contribute independently to the prediction of anxiety. Anxiety was negatively associated with relative cortical surface area of the VMPFC as well as with global cortical thickness, but these associations diminished with age. The two cortical phenotypes contributed additively to the prediction of anxiety. These findings suggest that higher anxiety in children may be characterized by both delayed expansion of the VMPFC and an altered trajectory of global cortical thinning. Further longitudinal studies will be needed to confirm these findings.
Project description:Lay abstractConversation is a key part of everyday social interactions. Previous studies have suggested that conversational skills are related to theory of mind, the ability to think about other people's mental states, such as beliefs, knowledge, and emotions. Both theory of mind and conversation are common areas of difficulty for autistic people, yet few studies have investigated how people, including autistic people, use theory of mind during conversation. We developed a new way of measuring cToM using two rating scales: cToM Positive captures behaviors that show consideration of a conversation partner's mental states, such as referring to their thoughts or feelings, whereas cToM Negative captures behaviors that show a lack of theory of mind through violations of neurotypical conversational norms, such as providing too much, too little, or irrelevant information. We measured cToM in 50 pairs of autistic and typically developing children (ages 8-16 years) during 5-min "getting to know you" conversations. Compared to typically developing children, autistic children displayed more frequent cToM Negative behaviors but very similar rates of cToM Positive behaviors. Across both groups, cToM Negative (but not Positive) ratings were related to difficulties in recognizing emotions from facial expressions and a lower tendency to talk about others' mental states spontaneously (i.e., without being instructed to do so), which suggests that both abilities are important for theory of mind in conversation. Altogether, this study highlights both strengths and difficulties among autistic individuals, and it suggests possible avenues for further research and for improving conversational skills.
Project description:ObjectiveMore knowledge on the impact of classroom setting on behavior of children with ADHD may help us to better adjust classroom settings to the needs of this group.MethodWe observed ADHD behaviors of 55 children with ADHD and 34 typically developing peers (6-12 years) during classroom transitions, group lessons, and individual seatwork.ResultsMultivariate analyses revealed that levels of motor and verbal hyperactivity increased during classroom transitions compared to group lessons and individual seatwork. Children in the ADHD group were more off-task, across settings. There were no interactions between group and setting.ConclusionsChildren with ADHD were similarly affected by classroom setting compared to typically developing peers, despite being more off-task across settings. Further research into whether the observed increase in hyperactivity during classroom transitions may be problematic or possibly even beneficial for children with ADHD is recommended.
Project description:The aim of the present study is to investigate the development of visuospatial attention in typically developing children and to propose reference values for children for the following six visuospatial attention tests: star cancellation, Ogden figure, reading test, line bisection, proprioceptive pointing and visuo-proprioceptive pointing. Data of 159 children attending primary or secondary school in the Fédération Wallonie Bruxelles (Belgium) were analyzed. Results showed that the children's performance on star cancellation, Ogden figure and reading test improved until the age of 13 years, whereas their performance on proprioceptive pointing, visuo-proprioceptive pointing and line bisection was stable with increasing age. These results suggest that the execution of different types of visuospatial attention tasks are not following the same developmental trajectories. This dissociation is strengthened by the lack of correlation observed between tests assessing egocentric and allocentric visuospatial attention, except for the star cancellation test (egocentric) and the Ogden figure copy (ego- and allocentric). Reference values are proposed that may be useful to examine children with clinical disorders of visuospatial attention.