Project description:Non-tuberculous mycobacteria (NTM) are emerging pathogens with high intrinsic drug resistance. Among rapidly growing NTM species, Mycobacterium abscessus is among the most pathogenic. Standard of care therapy has led to unacceptable outcomes and demonstrates the urgent need to develop effective, broad-spectrum antimycobacterial regimens. Through synthetic modification of spectinomycin (SPC), an aminocyclitol antibiotic, we have identified a distinct structural subclass of ethylene linked aminomethyl spectinomycins (eAmSPC) that are up to 64-fold more potent against M. abscessus when compared to SPC. Lead eAmSPC retain activity against other NTM species and multi-drug resistant M. abscessus clinical isolates. Sequencing of eAmSPC-resistant mutants revealed nucleotide changes in the distinct helix-34 spectinomycin binding site and X-ray crystallography further demonstrated the derivatives mode of ribosomal inhibition remained on target. The eAmSPC displayed increased intracellular accumulation compared to SPC and transcriptional profiling indicate that eAmSPC’s induce whiB7 resistance responses, however, the series maintains potency despite its expression. These leads display favorable pharmacokinetic profiles and robust efficacy in M. abscessus mouse infection models. The results of these studies suggest that eAmSPCs have the potential to be developed into clinical treatments for M. abscessus and other NTM infections.
Project description:Isolation of Mycobacterium abscessus subspecies abscessus (MAA) is common during Mycobacterium avium complex (MAC) lung disease therapy, but there is limited information about the clinical significance of the MAA isolates.We identified 53 of 180 patients (29%) treated for MAC lung disease who had isolation of MAA during MAC lung disease therapy. Patients were divided into those without (group 1) and those with (group 2) MAA lung disease.There were no significant demographic differences between patients with and without MAA isolation or between groups 1 and 2. Group 1 and 2 patients had similar total sputum cultures obtained (P = .7; 95% CI, -13.4 to 8.6) and length of follow-up (P = .8; 95% CI, -21.5 to 16.1). Group 2 patients had significantly more total positive cultures for MAA (mean±SD, 15.0 ± 11.1 vs 1.2 ± 0.4; P < .0001; 95% CI, -17.7 to -9.9), were significantly more likely to develop new or enlarging cavitary lesions while on MAC therapy (P > .0001), and were significantly more likely to meet all three American Thoracic Society diagnostic criteria for nontuberculous mycobacterial disease (21 of 21 [100%] vs 0 of 32 [0%]; P < .0001) compared with group 1 patients. Group 1 patients were significantly more likely to have single, positive MAA cultures than group 2 patients (25 of 31 vs 0 of 21; P < .0001).Microbiologic and clinical follow-up after completion of MAC lung disease therapy is required to determine the significance of MAA isolated during MAC lung disease therapy. Single MAA isolates are not likely to be clinically significant.
Project description:The rapidly growing mycobacterium M. abscessus sensu lato is the causative agent of emerging pulmonary and skin diseases and of infections following cosmetic surgery and postsurgical procedures. M. abscessus sensu lato can be divided into at least three subspecies: M. abscessus subsp. abscessus, M. abscessus subsp. massiliense, and M. abscessus subsp. bolletii. Clinical isolates of rapidly growing mycobacteria were previously identified as M. abscessus by DNA-DNA hybridization. More than 30% of these 117 clinical isolates were differentiated as M. abscessus subsp. massiliense using combinations of multilocus genotyping analyses. A much more cost-effective technique to distinguish M. abscessus subsp. massiliense from M. abscessus subsp. abscessus, a multiplex PCR assay, was developed using the whole-genome sequence of M. abscessus subsp. massiliense JCM15300 as a reference. Several primer sets were designed for single PCR to discriminate between the strains based on amplicons of different sizes. Two of these single-PCR target sites were chosen for development of the multiplex PCR assay. Multiplex PCR was successful in distinguishing clinical isolates of M. abscessus subsp. massiliense from samples previously identified as M. abscessus. This approach, which spans whole-genome sequencing and clinical diagnosis, will facilitate the acquisition of more-precise information about bacterial genomes, aid in the choice of more relevant therapies, and promote the advancement of novel discrimination and differential diagnostic assays.
Project description:BackgroundMycobacterium abscessus group includes antibiotic-resistant, opportunistic mycobacteria that are responsible for sporadic cases and outbreaks of cutaneous, pulmonary and disseminated infections. However, because of their close genetic relationships, accurate discrimination between the various strains of these mycobacteria remains difficult. In this report, we describe the development of a multispacer sequence typing (MST) analysis for the simultaneous identification and typing of M. abscessus mycobacteria. We also compared MST with the reference multilocus sequence analysis (MLSA) typing method.ResultsBased on the M. abscessus CIP104536T genome, eight intergenic spacers were selected, PCR amplified and sequenced in 21 M. abscessus isolates and analysed in 48 available M. abscessus genomes. MST and MLSA grouped 37 M. abscessus organisms into 12 and nine types, respectively; four formerly "M. bolletii" organisms and M. abscessus M139 into three and four types, respectively; and 27 formerly "M. massiliense" organisms grouped into nine and five types, respectively. The Hunter-Gaston index was off 0.912 for MST and of 0.903 for MLSA. The MST-derived tree was similar to that based on MLSA and rpoB gene sequencing and yielded three main clusters comprising each the type strain of the respective M. abscessus sub-species. Two isolates exhibited discordant MLSA- and rpoB gene sequence-derived position, one isolate exhibited discordant MST- and rpoB gene sequence-derived position and one isolate exhibited discordant MST- and MLSA-derived position. MST spacer n°2 sequencing alone allowed for the accurate identification of the different isolates at the sub-species level.ConclusionsMST is a new sequencing-based approach for both identifying and genotyping M. abscessus mycobacteria that clearly differentiates formerly "M. massiliense" organisms from other M. abscessus subsp. bolletii organisms.
Project description:Aims:To examine levels of social support and quality of life (QOL) and to examine the association between social support and QOL in patients receiving haemodialysis (HD) treatment. Design:A cross-sectional study. Method:social support and QOL were measured using the Multidimensional Scale of Perceived social Support (MSPSS) and the World Health Organization QOL-BREF questionnaires, respectively. A convenience sample of 195 patients receiving HD from different dialysis units across Jordan completed the questionnaires. Results:Respondents scored highest on the social relationships domain of QOL (55.5 SD 21.4) compared with the lowest mean scores of the physical and environmental domains (48.6 SD 20.4; 46.2 SD 17.3, respectively). social support had a positive significant association with quality of life. Multiple linear regression identified age and social support as influencing factors, explaining 24.6% of the total variance in the social domain of quality of life.Understanding the relationship between social support and QOL in patients receiving HD may provide guidance to the healthcare providers, family members and social services about the importance of social support to this group of patients.
Project description:ImportanceAcne is a common dermatologic condition and significantly affects psychosocial health and quality of life. An international task force recommended routine use of quality-of-life measures for clinic visits associated with acne management, but this has yet to translate into clinical practice.ObjectiveTo assess mean Skindex-16 scores over time among patients with moderate to severe acne receiving isotretinoin treatment.Design, setting, and participantsA longitudinal, retrospective case series study of Skindex-16 data collected at monthly visits from 57 consecutive patients with acne receiving isotretinoin; data were collected and evaluated between November 23, 2016, and January 22, 2019. Continuous variables were compared using quantile regression. Multivariable linear mixed models evaluated mean (95% CI) score trajectory over time.Main outcomes and measureSkindex-16 scores, including normalized scores for the emotional, symptomatic, and functional aspects of having skin disease as well as an overall score.ResultsFifty-seven patients (31 [54.4 %] males, with median [interquartile range] age of 17.2 [15.9-18.1] years) in this case series study completed the Skindex-16 at baseline and at least once during follow-up. Baseline Skindex-16 scores were similar by sex but worse with increasing age. Emotional impact was more bothersome to patients with acne requiring isotretinoin treatment than either symptoms or functioning. Improvements of greater than 50% in overall and Emotional domain scores were seen by month 2 of receiving isotretinoin treatment (eg, overall scores decreased from 39.4 to 17.5 by month 2; a decrease of 22.0; P < .001). Qualitatively, Skindex-16 scores reached their nadir between months 3 and 5; at month 4, overall Skindex-16 scores showed a 4.4-fold improvement (from 39.4 at baseline to 8.9; P < .001) and Emotional domain scores showed a 4.8-fold improvement (from 57.7 at baseline to 11.9; P < .001).Conclusions and relevanceThe findings of this case series suggest that patients receiving isotretinoin treatment achieve greater than a 50% improvement in quality of life by month 2 and can expect approximately 4-fold to 5-fold improvements from baseline with a full course of isotretinoin. This study shows the potential of routine administration of quality of life measures to assess patient care in dermatology.
Project description:An 81-year-old immunocompetent patient with bronchiectasis and refractory Mycobacterium abscessus lung disease was treated for 6 months with a three-phage cocktail active against the strain. In this case study of phage to lower infectious burden, intravenous administration was safe and reduced the M. abscessus sputum load tenfold within one month. However, after two months, M. abscessus counts increased as the patient mounted a robust IgM- and IgG-mediated neutralizing antibody response to the phages, which was associated with limited therapeutic efficacy.
Project description:Treatment of pulmonary infections caused by Mycobacterium abscessus are extremely difficult to treat, as this species is naturally resistant to many common antibiotics. Liposomes are vesicular nanocarriers suitable for hydrophilic and lipophilic drug loading, able to deliver drugs to the target site, and successfully used in different pharmaceutical applications. Moreover, liposomes are biocompatible, biodegradable and nontoxic vesicles and nebulized liposomes are efficient in targeting antibacterial agents to macrophages. The present aim was to formulate rifampicin-loaded liposomes (RIF-Lipo) for lung delivery, in order to increase the local concentration of the antibiotic. Unilamellar liposomal vesicles composed of anionic DPPG mixed with HSPC for rifampicin delivery were designed, prepared, and characterized. Samples were prepared by using the thin-film hydration method. RIF-Lipo and unloaded liposomes were characterized in terms of size, ζ-potential, bilayer features, stability and in different biological media. Rifampicin's entrapment efficiency and release were also evaluated. Finally, biological activity of RIF-loaded liposomes in Mycobacterium abscessus-infected macrophages was investigated. The results show that RIF-lipo induce a significantly better reduction of intracellular Mycobacterium abscessus viability than the treatment with free drug. Liposome formulation of rifampicin may represent a valuable strategy to enhance the biological activity of the drug against intracellular mycobacteria.
Project description:BackgroundMycobacterium abscessus is an emerging opportunistic pathogen which diversity was acknowledged by the recent description of two subspecies accommodating M. abscessus, Mycobacterium bolletii and Mycobacterium massiliense isolates.ResultsHere, genome analysis found 1-8 prophage regions in 47/48 M. abscessus genomes ranging from small prophage-like elements to complete prophages. A total of 20,304 viral and phage proteins clustered into 853 orthologous groups. Phylogenomic and phylogenetic analyses based on prophage region homology found three main clusters corresponding to M. abscessus, M. bolletii and M. massiliense. Analysing 135 annotated Tape Measure Proteins found thirteen clusters and four singletons, suggesting that at least 17 mycobacteriophages had infected M. abscessus during its evolution. The evolutionary history of phages differed from that of their mycobacterial hosts. In particular, 33 phage-related proteins have been horizontally transferred within M. abscessus genomes. They comprise of an integrase, specific mycobacteriophage proteins, hypothetical proteins and DNA replication and metabolism proteins. Gene exchanges, loss and gains which occurred in M. abscessus genomes have been driven by several mycobacteriophages.ConclusionsThis analysis of phage-mycobacterium co-evolution suggests that mycobacteriophages are playing a key-role in the on-going diversification of M. abscessus.ReviewersThis article was reviewed by Eric Bapteste, Patrick Forterre and Eugene Koonin.
Project description:Mycobacterium abscessus is an emerging human pathogen responsible for lung infections, skin and soft-tissue infections and disseminated infections in immunocompromised patients. It may exist either as a smooth (S) or rough (R) morphotype, the latter being associated with increased pathogenicity in various models. Genetic tools for homologous recombination and conditional gene expression are desperately needed to allow the study of M. abscessus virulence. However, descriptions of knock-out (KO) mutants in M. abscessus are rare, with only one KO mutant from an S strain described so far. Moreover, of the three major tools developed for homologous recombination in mycobacteria, only the one based on expression of phage recombinases is working. Several conditional gene expression tools have recently been engineered for Mycobacterium tuberculosis and Mycobacterium smegmatis, but none have been tested yet in M. abscessus. Based on previous experience with genetic tools allowing homologous recombination and their failure in M. abscessus, we evaluated the potential interest of a conditional gene expression approach using a system derived from the two repressors system, TetR/PipOFF. After several steps necessary to adapt TetR/PipOFF for M. abscessus, we have shown the efficiency of this system for conditional expression of an essential mycobacterial gene, fadD32. Inhibition of fadD32 was demonstrated for both the S and R isotypes, with marginally better efficiency for the R isotype. Conditional gene expression using the dedicated TetR/PipOFF system vectors developed here is effective in S and R M. abscessus, and may constitute an interesting approach for future genetic studies in this pathogen.