Pulmonary Delivery of Extracellular Vesicle-Encapsulated Dinaciclib as an Effective Lung Cancer Therapy.
Ontology highlight
ABSTRACT: The clinical outcomes of lung cancer remain poor, mainly due to the chemoresistance and low bioavailability of systemically delivered drugs. Therefore, novel therapeutic strategies are urgently needed. The TNF-related apoptosis-inducing ligand (TRAIL)-armed extracellular vesicle (EV-T) has proven to be highly synergistic for the killing of cancer cells with the potent cyclin-dependent kinase (CDK) inhibitor Dinaciclib (Dina). However, both optimal drug formulations and delivery strategies are yet to be established to facilitate the clinical application of the combination of EV-T and Dina. We hypothesize that Dina can be encapsulated into EV-T to produce a complexed formulation, designated EV-T-Dina, which can be nebulized for pulmonary delivery to treat lung cancer with potentially improved efficacy and safety. The prepared EV-T-Dina shows good stability both in vitro and in vivo and is very efficient at killing two highly TRAIL-resistant cancer lines. The ability to overcome TRAIL resistance is associated with the concomitant downregulation of the expression of cFLIP, MCL-1, and Survivin by Dina. The EV-T-Dina solution is nebulized for inhalation, showing unique deposition in animal lungs and importantly it demonstrates a significant suppression of the growth of orthotopic A549 tumors without any detectable adverse side events. In conclusion, the aerosolized EV-T-Dina constitutes a novel therapy, which is highly effective and safe for the treatment of lung cancers.
SUBMITTER: Yuan Q
PROVIDER: S-EPMC9318050 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA