Transcriptional Regulation and Protein Localization of Zip10, Zip13 and Zip14 Transporters of Freshwater Teleost Yellow Catfish Pelteobagrus fulvidraco Following Zn Exposure in a Heterologous HEK293T Model
Ontology highlight
ABSTRACT: Zip family proteins are involved in the control of zinc (Zn) ion homeostasis. The present study cloned the promoters and investigated the transcription responses and protein subcellular localizations of three LIV-1 subfamily members (zip10, zip13, and zip14) from common freshwater teleost yellow catfish, Pelteobagrus fulvidraco, using in vitro cultured HEK293T model cells. The 2278 bp, 1917 bp, and 1989 bp sequences of zip10, zip13, and zip14 promoters, respectively, were subcloned into pGL3-Basic plasmid for promoter activity analysis. The pcDNA3.1 plasmid coding EGFP tagged pfZip10, pfZip13, and pfZip14 were generated for subsequent confocal microscope analysis. Several potential transcription factors’ binding sites were predicted within the promoters. In vitro promoter analysis in the HEK293T cells showed that high Zn administration significantly reduced the transcriptional activities of the zip10, zip13, and zip14 promoters. The −2017 bp/−2004 bp MRE in the zip10 promoter, the −360 bp/−345 bp MRE in the zip13 promoter, and the −1457 bp/−1442 bp MRE in the zip14 promoter were functional loci that were involved in the regulation of the three zips. The −606 bp/−594 bp KLF4 binding site in the zip13 promoter was a functional locus responsible for zinc-responsive regulation of zip13. The −1383 bp/−1375 bp STAT3 binding site in the zip14 promoter was a functional locus responsible for zinc-responsive regulation of zip14. Moreover, confocal microscope analysis indicated that zinc incubation significantly reduced the fluorescence intensity of pfZip10-EGFP and pfZip14-EGFP but had no significant influence on pfZip13-EGFP fluorescence intensity. Further investigation found that pfZip10 localizes on cell membranes, pfZip14 colocalized with both cell membranes and lysosome, and pfZip13 colocalized with intracellular ER and Golgi. Our research illustrated the transcription regulation of zip10, zip13, and zip14 from P. fulvidraco under zinc administration, which provided a reference value for the mechanisms involved in Zip-family-mediated control of zinc homeostasis in vertebrates.
Project description:The present study was conducted to explore the mechanism of nano-Zn absorption and its influence on lipid metabolism in the intestine of yellow catfish Pelteobagrus fulvidraco. Compared to ZnSO4, dietary nano-Zn addition increased the triglyceride (TG) content, enzymatic activities of malic enzyme (ME) and fatty acid synthase (FAS), and up-regulated mRNA levels of 6pgd, fas, acca, dgat1, ppar?, and fatp4. Using primary intestinal epithelial cells of yellow catfish, compared to the ZnSO4 group, nano-Zn incubation increased the contents of TG and free fatty acids (FFA), the activities of glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6GPD), ME, and FAS, up-regulated mRNA levels of lipogenic genes (6pgd, g6pd, fas, dgat1, and ppar?), genes of lipid transport (fatp4 and ifabp), and Zn transport genes (znt5, znt7, mt, and mtf1), and increased the protein expression of fatty acid transport protein 4 (FATP4) and peroxisome proliferator activated receptor gamma (PPAR?). Further studies found that nano-Zn absorption was via the clathrin-dependent endocytic mechanism. PPAR? mediated the nano-Zn-induced increase in TG, and nano-Zn increased Zn accumulation and induced TG accumulation by activating the PPAR? pathway and up-regulating lipogenesis.
Project description:Excessive fat deposition in the hepatocytes, associated with excess dietary fat intake, was related to the occurrence of fatty livers in fish. miR-101b plays the important roles in controlling lipid metabolism, but the underlying mechanism at the post-transcriptional level remains unclear. The purpose of this study is to explore the roles and mechanism of miR-101b-mediating lipid deposition and metabolism in yellow catfish Pelteobagrus fulvidraco. We found that miR-101b directly targeted fatty acid translocase (cd36), caspase9 (casp9) and autophagy-related gene 4A (atg4a). Furthermore, using palmitic acid (PA) or oleic acid (OA) to incubate the primary hepatocytes of yellow catfish, we demonstrated that miR-101b inversely regulated cd36, casp9, and atg4a expression at the transcriptional level; the inhibition of miR-101b aggravated fatty acids (FAs, PA or OA)-induced lipid accumulation, indicating that miR-101b mediated FAs-induced variations of lipid metabolism in yellow catfish. Taken together, our study gave novel insight into the regulatory mechanism of lipid deposition and metabolism and might provide potential targets for the prevention and treatment of fatty livers in fish.
Project description:Lipophagy is a selective autophagy that regulates lipid metabolism and reduces hepatic lipid deposition. However, the underlying mechanism has not been understood in fish. In this study, we used micronutrient zinc (Zn) as a regulator of autophagy and lipid metabolism and found that Ras-related protein 7 (rab7) was involved in Zn-induced lipophagy in hepatocytes of yellow catfish Pelteobagrus pelteobagrus. We then characterized the rab7 promoter and identified binding sites for a series of transcription factors, including Forkhead box O3 (FOXO3). Site mutation experiments showed that the -1358/-1369 bp FOXO3 binding site was responsible for Zn-induced transcriptional activation of rab7. Further studies showed that inhibition of rab7 significantly inhibited Zn-induced lipid degradation by lipophagy. Moreover, rab7 inhibitor also mitigated the Zn-induced increase of cpt1α and acadm expression. Our results suggested that Zn exerts its lipid-lowering effect partly through rab7-mediated lipophagy and FA β-oxidation in hepatocytes. Overall, our findings provide novel insights into the FOXO3/rab7 axis in lipophagy regulation and enhance the understanding of lipid metabolism by micronutrient Zn, which may help to reduce excessive lipid accumulation in fish.
Project description:The present working hypothesis is that the Cu-induced changes in lipid metabolism may be mediated by miRNAs. Here, we describe the miRNA profile of the liver tissues of yellow catfish exposed to waterborne Cu, based on larger-scale sequencing of small RNA libraries. We identified a total of 172 distinct miRNAs. Among these miRNAs, compared to the control, mRNA expression levels of 16 miRNAs (miR-203a, 205, 1788-3p, 375, 31, 196a, 203b-3p, 2187-5p, 196d, 459-3p, 153a and miR-725, and two novel-miRNAs: chr4-1432, chr-7684) were down-regulated, and mRNA levels of miR-212 and chr20-5274 were up-regulated in Cu-exposed group. The functions of their target genes mainly involved ether lipid metabolism, glycerophospholipid metabolism, linoleic acid metabolism and α-linolenic acid metabolism. Cu exposure inhibited the expression of miR-205, whose predicted target genes were enriched in the pathway of lipid metabolism, including fas, lxrα, ddit3, lamp2, casp3a and baxa. These potential target genes were further verified by Dual-luciferase reporter gene assay. Using primary hepatocytes of yellow catfish, Cu incubation down-regulated miR-205 expression, and increased TG contents and FAS activity. LXR antagonist effectively ameliorate the Cu-induced change of TG content and FAS activity. These data suggest that down-regulation of the miRNA-205 may be an important step in Cu-induced changes in lipid metabolism in yellow catfish.
Project description:Body colours are important and striking features for individual survival and reproductive success, in particular in vertebrates where mating behaviour and mate preference may be strongly influenced by non-normal phenotypes. Pigmentation disorders may be generated by disruption of one or many independent genes as well as by environmental factors. The first discovery of albino yellow catfish (Pelteobagrus fulvidraco Richardson) with golden skin colour from fish farms in China provides us valuable material to study the molecular mechanism underlying the abnormalities of pigmentation. In this study, transcriptome sequencing of fin tissues corresponding to the distinct body colours, wild type and mutant albino yellow catfish, were performed using Illumina sequencing technology. Based on next-generation sequencing technology and de novo assembly, we generated a transcriptome of P. fulvidraco. A number of genes differentially expressed between the wild types and albinos were identified, suggesting their contribution to the different phenotypes and fitness. However, non-synonymous mutations result from single nucleotide substitutions residing in coding regions may not contribute to such differences. Based on the high-throughput expression data generated for the two different types of P. fulvidraco, we found that alterations of expression pattern may be more common than non-synonymous mutations. The transcriptome of P. fulvidraco will be an invaluable resource for subsequent comparative genomics and evolutionary analyses of this economically important fish.
Project description:Yellow catfish (Pelteobagrus fulvidraco) is a pivotal freshwater aquaculture species in China. It shows sexual size dimorphism favoring male in growth. Whole transcriptome approach is required to get the overview of genetic toolkit for understanding the sex determination mechanism aiming at devising its monosex production. Beside gonads, the brain is also considered as a major organ for vertebrate reproduction. Transcriptomic analyses on the brain and of different developmental stages will provide the dynamic view necessary for better understanding its sex determination. In this regard, we have performed a de novo assembly of yellow catfish brain transcriptome by high throughput Illumina sequencing. A total number of 154,507 contigs were obtained with the lengths ranging from 201 to 27,822 bp and N50 of 2,101 bp, as well as 20,699 unigenes were identified. Of these unigenes, 13 and 54 unigenes were detected to be XY-specifically expressed genes (SEGs) for one and 2-year-old yellow catfish, while the corresponding numbers of XX-SEGs for those two stages were 19 and 13, respectively. Our work identifies a set of annotated genes that are candidate factors affecting sexual dimorphism as well as simple sequence repeat (SSR) and single nucleotide variation (SNV) in yellow catfish. To validate the expression patterns of the sex-related genes, we performed quantitative real-time PCR (qRT-PCR) indicating the reliability and accuracy of our analysis. The results in our study may enhance our understanding of yellow catfish sex determination and potentially help to improve the production of all-male yellow catfish for aquaculture.
Project description:Although several studies have been conducted to study leptin function, information is very scarce on the molecular mechanism of leptin in fatty acid β-oxidation and oocytes maturation in fish. In this study, we investigated the potential role of fatty acid β-oxidation in leptin-mediated oocytes maturation in Pelteobagrus fulvidraco. Exp. 1 investigated the transcriptomic profiles of ovary and the differential expression of genes involved in β-oxidation and oocytes maturation following rt-hLEP injection; rt-hLEP injection was associated with significant changes in the expression of genes, including twenty-five up-regulated genes (CPT1, Acsl, Acadl, Acadm, Hadhb, Echsl, Hsd17b4, Acca, PPARα, CYP8B1, ACOX1, ACBP, MAPK, RINGO, Cdc2, MEK1, IGF-1R, APC/C, Cdk2, GnRHR, STAG3, SMC1, FSHβ and C-Myc) and ten down-regulated gene (PPARγ, FATCD36, UBC, PDK1, Acads, Raf, Fizzy, C3H-4, Raf and PKC), involved in fatty acid β-oxidation and oocytes maturation. In Exp. 2, rt-hLEP and specific inhibitors AG490 (JAK-STAT inhibitor) were used to explore whether leptin induced oocytes maturation, and found that leptin incubation increased the diameters of oocytes and percentage of germinal vesicle breakdown (GVBD)-MII oocytes, up-regulated mRNA levels of genes involved in oocytes maturation and that leptin-induced oocyte maturation was related to activation of JAK-STAT pathway. In Exp. 3, primary oocytes of P. fulvidraco were treated with (R)-(+)-etomoxir (an inhibitor of β-oxidation) or l-carnitine (an enhancer of β-oxidation) for 48 h under rt-hLEP incubation. Exp. 3 indicated that the inhibition of fatty acid β-oxidation resulted in the down-regulation of gene expression involved in oocytes maturation, and repressed the leptin-induced up-regulation of these gene expression. Activation of fatty acid β-oxidation improved the maturation rate and mean diameter of oocytes, and up-regulated gene expression involved in oocytes maturation. Leptin is one of the main factors that links fatty acid β-oxidation with oocyte maturation; β-oxidation is essential for leptin-mediated oocyte maturation in fish.
Project description:Compared with marine organisms, research on microplastics (MPs) in freshwater organisms is still less although MPs have been widely found in the freshwater ecosystem. Hypoxia is a ubiquitous issue in freshwater aquaculture, and under such scenarios, the toxic effects of MPs on typical aquaculture fish need to be clarified. In this study, we studied the effects of MPs (polystyrene) on specific growth rate (SGR), hypoxia-inducible factor-1α (HIF-1α), tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), and interferon (IFN) in the yellow catfish (Pelteobagrus fulvidraco) under hypoxic conditions. After 15 days of exposure, the SGR was not affected by MPs or hypoxia. MPs significantly increased the expressions of HIF-1α and TNF-α but inhibited the expression of IFN at high concentration MPs under normoxia. However, hypoxia significantly inhibited the expression of IL-8 and TNF-α under high MP concentration and low MP concentration, respectively. In addition, MPs had significant concentration-dependent inhibitory effects on IFN under hypoxia. Surprisingly, a positive correction between HIF-1α and TNF-α was found in fish. Although hypoxia might alleviate the effects of MPs with low concentrations, the interaction of hypoxia and MPs aggravated the negative effects of MPs on immune factors at high concentration MPs. This study provided new insight into the complex effects of hypoxia and MPs on aquatic organisms, and future studies should focus on the cellular pathways of immune cells in fish. Given that MPs could induce the immune response in fish, considerations should be paid to the impacts of MPs on freshwater aquaculture, and hypoxia should be taken into consideration when evaluating the effects of MPs.
Project description:Background To investigate the mechanism of plant protein components on nutritional value, growth performance, flesh quality, flavor, and proliferation of myocytes of yellow catfish (Pelteobagrus fulvidraco). Methods A total of 540 yellow catfish were randomly allotted into six experimental groups with three replicates and fed six different diets for 8 weeks. Results and Conclusions The replacement of fish meal with cottonseed meal (CM), sesame meal (SEM), and corn gluten meal (CGM) in the diet significantly reduced growth performance, crude protein, and crude lipid, but the flesh texture (hardness and chewiness) was observably increased. Moreover, the flavor-related amino acid (glutamic acid, glycine, and proline) contents in the CM, SEM, and CGM groups of yellow catfish muscle were significantly increased compared with the fish meal group. The results of metabolomics showed that soybean meal (SBM), peanut meal (PM), CM, SEM, and CGM mainly regulated muscle protein biosynthesis by the variations in the content of vitamin B6, proline, glutamic acid, phenylalanine, and tyrosine in muscle, respectively. In addition, Pearson correlation analysis suggested that the increased glutamic acid content and the decreased tyrosine content were significantly correlated with the inhibition of myocyte proliferation genes. This study provides necessary insights into the mechanism of plant proteins on the dynamic changes of muscle protein, flesh quality, and myocyte proliferation in yellow catfish.
Project description:This study aimed to examine the pharmacokinetics of doxycycline (DC) in yellow catfish (Pelteobagrus fulvidraco) and to calculate related pharmacokinetic-pharmacodynamic (PK/PD) parameters of DC against Edwardsiella ictaluri. The minimum inhibitory concentration of DC against E. ictaluri was determined to be 500 µg/L. As the increase of oral dose from 10 to 40 mg/kg, the area under the concentration vs. time curve from 0 to 96 h (AUC0-96) values were considerably increased in gill, kidney, muscle and skin, and plasma, except in liver. Cmax values exhibited a similar dose-dependent increase trend in plasma and tissues except in liver, but other PK parameters had no apparent dose-dependence. The PK/PD parameter of the ratio of AUC0-96 to minimum inhibitory concentration (AUC0-96h/MIC) was markedly increased in plasma and tissues dose-dependently except in liver, but %T > MIC values were increased only moderately at some dose groups. After receiving the same dose with disparate time intervals from 96 to 12 h, the AUC0-96h/MIC was distinctly increased in plasma and tissues, but the %T > MIC had a decreasing trend. When administering 20 mg/kg with a time interval of 96 h, the AUC0-96h/MIC values were consistently >173.03 h and the %T > MIC values were above 99.47% in plasma and all tissues. These results suggest that administration of DC at 20 mg/kg every 96 h is a preferable regimen in yellow catfish.