Unknown

Dataset Information

0

Targeting transcription in heart failure via CDK7/12/13 inhibition.


ABSTRACT: Heart failure with reduced ejection fraction (HFrEF) is associated with high mortality, highlighting an urgent need for new therapeutic strategies. As stress-activated cardiac signaling cascades converge on the nucleus to drive maladaptive gene programs, interdicting pathological transcription is a conceptually attractive approach for HFrEF therapy. Here, we demonstrate that CDK7/12/13 are critical regulators of transcription activation in the heart that can be pharmacologically inhibited to improve HFrEF. CDK7/12/13 inhibition using the first-in-class inhibitor THZ1 or RNAi blocks stress-induced transcription and pathologic hypertrophy in cultured rodent cardiomyocytes. THZ1 potently attenuates adverse cardiac remodeling and HFrEF pathogenesis in mice and blocks cardinal features of disease in human iPSC-derived cardiomyocytes. THZ1 suppresses Pol II enrichment at stress-transactivated cardiac genes and inhibits a specific pathologic gene program in the failing mouse heart. These data identify CDK7/12/13 as druggable regulators of cardiac gene transactivation during disease-related stress, suggesting that HFrEF features a critical dependency on transcription that can be therapeutically exploited.

SUBMITTER: Hsu A 

PROVIDER: S-EPMC9329381 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6251623 | biostudies-literature
| S-SCDT-EMM-2021-14990 | biostudies-other
2018-06-27 | GSE116282 | GEO
| S-EPMC4244910 | biostudies-literature
| S-EPMC8343003 | biostudies-literature
| S-EPMC4243043 | biostudies-literature
2019-03-01 | GSE120177 | GEO
| S-EPMC8183379 | biostudies-literature
| S-EPMC6211812 | biostudies-literature
2019-03-01 | GSE120176 | GEO