Ontology highlight
ABSTRACT: Aim
Inulin, a soluble dietary fiber, is a source of energy for the host while the metabolites, such as short-chain fatty acids (SCFAs), produced in the gut through bacterial fermentation exerts the anti-obesity effect. In this study, we aimed to apply a metabolomics approach and clarify the role of this soluble dietary fiber on glucose and lipid metabolism under the calorie-matched condition. Materials and methods
Eight-week-old male C57BL/6J mice were fed a high-fat/high-sucrose based diet containing maltodextrin or inulin for 12 weeks through calorie-matched pair feeding. We evaluated glucose tolerance, and energy expenditure using indirect calorimetry, comprehensive metabolites in the content of jejunum, feces, and portal vein serum using gas chromatography-mass spectrometry, and histological changes in the adipose tissue. Results
The inulin group exhibited reduced visceral adipose tissue and smaller size of visceral adipocyte. It also exhibited improved glucose tolerance and an increase in energy expenditure. Reflecting the results of fermentation, the metabolomics analysis revealed an increase in the succinic acid and SCFA contents in both feces and portal vein serum in the inulin group. Conclusions
Inulin altered the gut metabolites and reduced visceral adipose tissue, thereby resulting in improved glucose tolerance. Supplementary Information
The online version contains supplementary material available at 10.1186/s12986-022-00685-1.
SUBMITTER: Nakajima H
PROVIDER: S-EPMC9331483 | biostudies-literature |
REPOSITORIES: biostudies-literature