Unknown

Dataset Information

0

Revealing hidden defects through stored energy measurements of radiation damage.


ABSTRACT: With full knowledge of a material's atomistic structure, it is possible to predict any macroscopic property of interest. In practice, this is hindered by limitations of the chosen characterization techniques. For example, electron microscopy is unable to detect the smallest and most numerous defects in irradiated materials. Instead of spatial characterization, we propose to detect and quantify defects through their excess energy. Differential scanning calorimetry of irradiated Ti measures defect densities five times greater than those determined using transmission electron microscopy. Our experiments also reveal two energetically distinct processes where the established annealing model predicts one. Molecular dynamics simulations discover the defects responsible and inform a new mechanism for the recovery of irradiation-induced defects. The combination of annealing experiments and simulations can reveal defects hidden to other characterization techniques and has the potential to uncover new mechanisms behind the evolution of defects in materials.

SUBMITTER: Hirst CA 

PROVIDER: S-EPMC9348784 | biostudies-literature | 2022 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Revealing hidden defects through stored energy measurements of radiation damage.

Hirst Charles A CA   Granberg Fredric F   Kombaiah Boopathy B   Cao Penghui P   Middlemas Scott S   Kemp R Scott RS   Li Ju J   Nordlund Kai K   Short Michael P MP  

Science advances 20220803 31


With full knowledge of a material's atomistic structure, it is possible to predict any macroscopic property of interest. In practice, this is hindered by limitations of the chosen characterization techniques. For example, electron microscopy is unable to detect the smallest and most numerous defects in irradiated materials. Instead of spatial characterization, we propose to detect and quantify defects through their excess energy. Differential scanning calorimetry of irradiated Ti measures defect  ...[more]

Similar Datasets

| S-EPMC11686182 | biostudies-literature
| S-EPMC5397860 | biostudies-literature
| S-EPMC7079370 | biostudies-literature
| S-EPMC2806430 | biostudies-literature
| S-EPMC3083911 | biostudies-literature
| S-EPMC7749207 | biostudies-literature
| S-EPMC3971399 | biostudies-literature
| S-EPMC4071054 | biostudies-literature
| S-EPMC10810814 | biostudies-literature
| S-EPMC7603397 | biostudies-literature