Unknown

Dataset Information

0

Filtering the NMR Spectra of Mixtures by Coordination to Paramagnetic Cu2.


ABSTRACT: The paramagnetic spin relaxation (PSR) filter allows the selective NMR signal suppression of components in mixtures according to their complexation ability to a paramagnetic ion. It relies on the faster relaxation of nuclei in paramagnetic environments and thus is complementary to classical diffusion and relaxation filters. So far, the PSR filter has established Gd3+ as the sole PSR agent, restricting the paramagnetic filtering repertoire. Herein, we present Cu2+ as a robust PSR agent with characteristic filtering properties. While Gd3+ depends on unspecific ion-pair interactions with anionic components, Cu2+ stands out for filtering species via ordered coordination complexes. An evaluation of the paramagnetic effect of Cu2+ over more than 50 small molecules and polymers has unveiled different sensitivities to Cu2+ (especially high for pyridines, diamines, polyamines, and amino alcohols) and precise filtering conditions for mixtures (1H, COSY, and HMQC) that were challenged with a test bed of commercial drugs. The advantage of integrating Cu2+ and Gd3+ for the stepwise PSR filtering of complex mixtures is also shown.

SUBMITTER: Correa J 

PROVIDER: S-EPMC9366733 | biostudies-literature | 2022 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Filtering the NMR Spectra of Mixtures by Coordination to Paramagnetic Cu<sup>2</sup>.

Correa Juan J   Garcia-Barandela Ana A   Socias-Pinto Llorenç L   Fernandez-Megia Eduardo E  

Analytical chemistry 20220727 31


The paramagnetic spin relaxation (PSR) filter allows the selective NMR signal suppression of components in mixtures according to their complexation ability to a paramagnetic ion. It relies on the faster relaxation of nuclei in paramagnetic environments and thus is complementary to classical diffusion and relaxation filters. So far, the PSR filter has established Gd<sup>3+</sup> as the sole PSR agent, restricting the paramagnetic filtering repertoire. Herein, we present Cu<sup>2+</sup> as a robus  ...[more]

Similar Datasets

| S-EPMC2860149 | biostudies-literature
| S-EPMC4418630 | biostudies-literature
| S-EPMC5956532 | biostudies-literature
| S-EPMC7590057 | biostudies-literature
| S-EPMC9227391 | biostudies-literature
| S-EPMC10500712 | biostudies-literature
| S-EPMC4624446 | biostudies-literature
| S-EPMC9303527 | biostudies-literature
| S-EPMC7092367 | biostudies-literature
| S-EPMC3213069 | biostudies-literature