Unknown

Dataset Information

0

A non-invasive ultrasensitive diagnostic approach for COVID-19 infection using salivary label-free SERS fingerprinting and artificial intelligence.


ABSTRACT: Clinical diagnostics for SARS-CoV-2 infection usually comprises the sampling of throat or nasopharyngeal swabs that are invasive and create patient discomfort. Hence, saliva is attempted as a sample of choice for the management of COVID-19 outbreaks that cripples the global healthcare system. Although limited by the risk of eliciting false-negative and positive results, tedious test procedures, requirement of specialized laboratories, and expensive reagents, nucleic acid-based tests remain the gold standard for COVID-19 diagnostics. However, genetic diversity of the virus due to rapid mutations limits the efficiency of nucleic acid-based tests. Herein, we have demonstrated the simplest screening modality based on label-free surface enhanced Raman scattering (LF-SERS) for scrutinizing the SARS-CoV-2-mediated molecular-level changes of the saliva samples among healthy, COVID-19 infected and COVID-19 recovered subjects. Moreover, our LF-SERS technique enabled to differentiate the three classes of corona virus spike protein derived from SARS-CoV-2, SARS-CoV and MERS-CoV. Raman spectral data was further decoded, segregated and effectively managed with the aid of machine learning algorithms. The classification models built upon biochemical signature-based discrimination method of the COVID-19 condition from the patient saliva ensured high accuracy, specificity, and sensitivity. The trained support vector machine (SVM) classifier achieved a prediction accuracy of 95% and F1-score of 94.73%, and 95.28% for healthy and COVID-19 infected patients respectively. The current approach not only differentiate SARS-CoV-2 infection with healthy controls but also predicted a distinct fingerprint for different stages of patient recovery. Employing portable hand-held Raman spectrophotometer as the instrument and saliva as the sample of choice will guarantee a rapid and non-invasive diagnostic strategy to warrant or assure patient comfort and large-scale population screening for SARS-CoV-2 infection and monitoring the recovery process.

SUBMITTER: Karunakaran V 

PROVIDER: S-EPMC9389522 | biostudies-literature | 2022 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications


Clinical diagnostics for SARS-CoV-2 infection usually comprises the sampling of throat or nasopharyngeal swabs that are invasive and create patient discomfort. Hence, saliva is attempted as a sample of choice for the management of COVID-19 outbreaks that cripples the global healthcare system. Although limited by the risk of eliciting false-negative and positive results, tedious test procedures, requirement of specialized laboratories, and expensive reagents, nucleic acid-based tests remain the g  ...[more]

Similar Datasets

| S-EPMC10507157 | biostudies-literature
| S-EPMC9855407 | biostudies-literature
| S-EPMC7045509 | biostudies-literature
| S-EPMC10445531 | biostudies-literature
| S-EPMC7174840 | biostudies-literature
| S-EPMC6357763 | biostudies-literature
| S-EPMC11836352 | biostudies-literature
| S-EPMC10945334 | biostudies-literature
| S-EPMC10478765 | biostudies-literature
| S-EPMC11347630 | biostudies-literature