Project description:Classical molecular dynamics simulations and free energy methods have been used to obtain a better understanding of the molecular processes occurring prior to the first nucleation event for calcium phosphate biominerals. The association constants for the formation of negatively charged complexes containing calcium and phosphate ions in aqueous solution have been computed, and these results suggest that the previously proposed calcium phosphate building unit, [Ca(HPO4)3]4-, should only be present in small amounts under normal experimental conditions. However, the presence of an activation barrier for the removal of an HPO4 2- ion from this complex indicates that this species could be kinetically trapped. Aggregation pathways involving CaHPO4, [Ca(HPO4)2]2-, and [Ca(HPO4)3]4- complexes have been explored with the finding that dimerization is favorable up to a Ca/HPO4 ratio of 1:2.
Project description:The development of multistep nucleation theory has spurred on experimentalists to find intermediate metastable states that are relevant to the solidification pathway of the molecule under interest. A great deal of studies focused on characterizing the so-called "precritical clusters" that may arise in the precipitation process. However, in macromolecular systems, the role that these clusters might play in the nucleation process and in the second stage of the precipitation process, i.e., growth, remains to a great extent unknown. Therefore, using biological macromolecules as a model system, we have studied the mesoscopic intermediate, the solid end state, and the relationship that exists between them. We present experimental evidence that these clusters are liquid-like and stable with respect to the parent liquid and metastable compared with the emerging crystalline phase. The presence of these clusters in the bulk liquid is associated with a nonclassical mechanism of crystal growth and can trigger a self-purifying cascade of impurity-poisoned crystal surfaces. These observations demonstrate that there exists a nontrivial connection between the growth of the macroscopic crystalline phase and the mesoscopic intermediate which should not be ignored. On the other hand, our experimental data also show that clusters existing in protein solutions can significantly increase the nucleation rate and therefore play a relevant role in the nucleation process.
Project description:Water and butanol are used as working fluids in condensation particle counters, and condensation of a single vapor onto an ion can be used as a simple model system for the study of ion-induced nucleation in the atmosphere. Motivated by this, we examine heterogeneous nucleation of water (H2O) and n-butanol (BuOH) vapors onto three positively (Li+, Na+, K+) and three negatively charged (F-, Cl-, Br-) ions using classical nucleation theory and computational quantum chemistry methods. We study phenomena that cannot be captured by Kelvin-Thomson equation for small nucleation ion cores. Our quantum chemistry calculations reveal the molecular mechanism behind ion-induced nucleation for each studied system. Typically, ions become solvated from all sides after several vapor molecules condense onto the ion. However, we show that the clusters of water and large negatively charged ions (Cl- and Br-) thermodynamically prefer the ion being migrated to the cluster surface. Although our methods generally do not show clear sign-preference for ion-water nucleation, we identified positive sign-preference for ion-butanol nucleation caused by the possibility to form stabilizing hydrogen bonds between butanol molecules condensed onto a positively charged ion. These bonds cannot form when butanol condenses onto a negatively charged ion. Therefore, we show that ion charge, its sign, as well as vapor properties have effects on the prenucleation and critical cluster/droplet sizes and also on the molecular mechanism of ion-induced nucleation.
Project description:Calcium carbonate is an abundant substance that can be created in several mineral forms by the reaction of dissolved carbon dioxide in water with calcium ions. Through biomineralization, organisms can harness and control this process to form various functional materials that can act as anything from shells through to lenses. The early stages of calcium carbonate formation have recently attracted attention as stable prenucleation clusters have been observed, contrary to classical models. Here we show, using computer simulations combined with the analysis of experimental data, that these mineral clusters are made of an ionic polymer, composed of alternating calcium and carbonate ions, with a dynamic topology consisting of chains, branches and rings. The existence of a disordered, flexible and strongly hydrated precursor provides a basis for explaining the formation of other liquid-like amorphous states of calcium carbonate, in addition to the non-classical behaviour during growth of amorphous calcium carbonate.
Project description:Liquid-liquid phase separation (LLPS) is an intermediate step during the precipitation of calcium carbonate, and is assumed to play a key role in biomineralization processes. Here, we have developed a model where ion association thermodynamics in homogeneous phases determine the liquid-liquid miscibility gap of the aqueous calcium carbonate system, verified experimentally using potentiometric titrations, and kinetic studies based on stopped-flow ATR-FTIR spectroscopy. The proposed mechanism explains the variable solubilities of solid amorphous calcium carbonates, reconciling previously inconsistent literature values. Accounting for liquid-liquid amorphous polymorphism, the model also provides clues to the mechanism of polymorph selection. It is general and should be tested for systems other than calcium carbonate to provide a new perspective on the physical chemistry of LLPS mechanisms based on stable prenucleation clusters rather than un-/metastable fluctuations in biomineralization, and beyond.
Project description:The significance of iron sulphide (FeS) formation extends to "origin of life" theories, industrial applications, and unwanted scale formation. However, the initial stages of FeS nucleation, particularly the impact of solution composition, remain unclear. Often, the iron and sulphide components' stoichiometry in solution differs from that in formed particles. This study uses ab initio methods to computationally examine aqueous FeS prenucleation clusters with excess Fe(II) or S(-II). The results suggest that clusters with additional S(-II) are more likely to form, implying faster nucleation of FeS particles in S(-II)-rich environments compared to Fe(II)-rich ones.
Project description:Bicontinuous hierarchically porous Mn2O3 single crystals (BHP-Mn2O3-SCs) with uniform parallelepiped geometry and tunable sizes have been synthesized and used as anode materials for lithium-ion batteries (LIBs). The monodispersed BHP-Mn2O3-SCs exhibit high specific surface area and three dimensional interconnected bimodal mesoporosity throughout the entire crystal. Such hierarchical interpenetrating porous framework can not only provide a large number of active sites for Li ion insertion, but also good conductivity and short diffusion length for Li ions, leading to a high lithium storage capacity and enhanced rate capability. Furthermore, owing to their specific porosity, these BHP-Mn2O3-SCs as anode materials can accommodate the volume expansion/contraction that occurs with lithium insertion/extraction during discharge/charge processes, resulting in their good cycling performance. Our synthesized BHP-Mn2O3-SCs with a size of ~700 nm display the best electrochemical performance, with a large reversible capacity (845 mA h g(-1) at 100 mA g(-1) after 50 cycles), high coulombic efficiency (>95%), excellent cycling stability and superior rate capability (410 mA h g(-1) at 1 Ag(-1)). These values are among the highest reported for Mn2O3-based bulk solids and nanostructures. Also, electrochemical impedance spectroscopy study demonstrates that the BHP-Mn2O3-SCs are suitable for charge transfer at the electrode/electrolyte interface.
Project description:Chemical reactions in solution almost always take place via a series of minute intermediates that are often in rapid equilibrium with each other, and hence hardly characterizable at the level of atomistic molecular structures. We found that single-molecule atomic-resolution real-time electron microscopic (SMART-EM) video imaging provides a unique methodology for capturing and analyzing the minute reaction intermediates, as illustrated here for single prenucleation clusters (PNCs) in the reaction mixture of metal-organic frameworks (MOFs). Specifically, we found two different types of PNCs are involved in the formation of MOF-2 and MOF-5 from a mixture of zinc nitrate and benzene dicarboxylates at 95 °C and 120 °C, respectively. SMART-EM identified a small amount of 1-nm-sized cube and cube-like PNCs in the MOF-5 synthesis, but not in the MOF-2 synthesis. In the latter, we instead found only linear and square PNCs, suggesting that the MOF-2/-5 bifurcation takes place at the PNC stage.
Project description:Recent advances in classical density functional theory are combined with stochastic process theory and rare event techniques to formulate a theoretical description of nucleation, including crystallization, that can predict nonclassical nucleation pathways based on no input other than the interaction potential of the particles making up the system. The theory is formulated directly in terms of the density field, thus forgoing the need to define collective variables. It is illustrated by application to diffusion-limited nucleation of macromolecules in solution for both liquid-liquid separation and crystallization. Both involve nonclassical pathways with crystallization, in particular, proceeding by a two-step mechanism consisting of the formation of a dense-solution droplet followed by ordering originating at the core of the droplet. Furthermore, during the ordering, the free-energy surface shows shallow minima associated with the freezing of liquid into solid shells, which may shed light on the widely observed metastability of nanoscale clusters.
Project description:Small-molecular-weight (MW) additives can strongly impact amorphous calcium carbonate (ACC), playing an elusive role in biogenic, geologic, and industrial calcification. Here, we present molecular mechanisms by which these additives regulate stability and composition of both CaCO3 solutions and solid ACC. Potent antiscalants inhibit ACC precipitation by interacting with prenucleation clusters (PNCs); they specifically trigger and integrate into PNCs or feed PNC growth actively. Only PNC-interacting additives are traceable in ACC, considerably stabilizing it against crystallization. The selective incorporation of potent additives in PNCs is a reliable chemical label that provides conclusive chemical evidence that ACC is a molecular PNC-derived precipitate. Our results reveal additive-cluster interactions beyond established mechanistic conceptions. They reassess the role of small-MW molecules in crystallization and biomineralization while breaking grounds for new sustainable antiscalants.