Unknown

Dataset Information

0

Supramolecular Self-Assembly Strategy towards Fabricating Mesoporous Nitrogen-Rich Carbon for Efficient Electro-Fenton Degradation of Persistent Organic Pollutants.


ABSTRACT: The electro-Fenton (EF) process is regarded as an efficient and promising sewage disposal technique for sustainable water environment protection. However, current developments in EF are largely restricted by cathode electrocatalysts. Herein, a supramolecular self-assembly strategy is adopted for synthetization, based on melamine-cyanuric acid (MCA) supramolecular aggregates integrated with carbon fixation using 5-aminosalicylic acid and zinc acetylacetonate hydrate. The prepared carbon materials characterize an ordered lamellar microstructure, high specific surface area (595 m2 g-1), broad mesoporous distribution (4~33 nm) and high N doping (19.62%). Such features result from the intrinsic superiority of hydrogen-bonded MCA supramolecular aggregates via the specific molecular assembly process. Accordingly, noteworthy activity and selectivity of H2O2 production (~190.0 mg L-1 with 2 h) are achieved. Excellent mineralization is declared for optimized carbon material in several organic pollutants, namely, basic fuchsin, chloramphenicol, phenol and several mixed triphenylmethane-type dyestuffs, with total organic carbon removal of 87.5%, 74.8%, 55.7% and 54.2% within 8 h, respectively. This work offers a valuable insight into facilitating the application of supramolecular-derived carbon materials for extensive EF degradation.

SUBMITTER: Chen Y 

PROVIDER: S-EPMC9413581 | biostudies-literature | 2022 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Supramolecular Self-Assembly Strategy towards Fabricating Mesoporous Nitrogen-Rich Carbon for Efficient Electro-Fenton Degradation of Persistent Organic Pollutants.

Chen Ye Y   Tian Miao M   Liu Xupo X  

Nanomaterials (Basel, Switzerland) 20220817 16


The electro-Fenton (EF) process is regarded as an efficient and promising sewage disposal technique for sustainable water environment protection. However, current developments in EF are largely restricted by cathode electrocatalysts. Herein, a supramolecular self-assembly strategy is adopted for synthetization, based on melamine-cyanuric acid (MCA) supramolecular aggregates integrated with carbon fixation using 5-aminosalicylic acid and zinc acetylacetonate hydrate. The prepared carbon materials  ...[more]

Similar Datasets

| S-EPMC5677036 | biostudies-literature
| S-EPMC10580281 | biostudies-literature
| S-EPMC7763907 | biostudies-literature
| S-EPMC8340609 | biostudies-literature
| S-EPMC5488215 | biostudies-literature
| S-EPMC9306853 | biostudies-literature
| S-EPMC7221348 | biostudies-literature
| S-EPMC10059984 | biostudies-literature
| S-EPMC6322679 | biostudies-literature
| S-EPMC3788363 | biostudies-literature