Project description:BackgroundBefore the omicron era, health care workers were usually vaccinated with either the primary 2-dose ChAdOx1 nCoV-19 (Oxford-AstraZeneca) series plus a booster dose of BNT162b2 (Pfizer-BioNTech) (CCB group) or the primary 2-dose BNT162b2 series plus a booster dose of BNT162b2 (BBB group) in Korea.MethodsThe two groups were compared using quantification of the surrogate virus neutralization test for wild type severe acute respiratory syndrome coronavirus 2 (SVNT-WT), the omicron variant (SVNT-O), spike-specific IgG, and interferon-gamma (IFN-γ), as well as the omicron breakthrough infection cases.ResultsThere were 113 participants enrolled in the CCB group and 51 enrolled in the BBB group. Before and after booster vaccination, the median SVNT-WT and SVNT-O values were lower in the CCB (SVNT-WT [before-after]: 72.02-97.61%, SVNT-O: 15.18-42.29%) group than in the BBB group (SVNT-WT: 89.19-98.11%, SVNT-O: 23.58-68.56%; all P < 0.001). Although the median IgG concentrations were different between the CCB and BBB groups after the primary series (2.677 vs. 4.700 AU/mL, respectively, P < 0.001), they were not different between the two groups after the booster vaccination (7.246 vs. 7.979 AU/mL, respectively, P = 0.108). In addition, the median IFN-γ concentration was higher in the BBB group than in the CCB group (550.5 and 387.5 mIU/mL, respectively, P = 0.014). There was also a difference in the cumulative incidence curves over time (CCB group 50.0% vs. BBB group 41.8%; P = 0.045), indicating that breakthrough infection occurred faster in the CCB group.ConclusionThe cellular and humoral immune responses were low in the CCB group so that the breakthrough infection occurred faster in the CCB group than in the BBB group.
Project description:Background: The emergence of new SARS-CoV-2 variants, which evade immunity, has raised the urgent need for multiple vaccine booster doses for vulnerable populations. In this study, we aimed to estimate the BNT162b2 booster effectiveness against the spread of coronavirus variants in a hemodialysis population. Methods: We compared humoral and cell-mediated immunity in 100 dialysis patients and 66 age-matched volunteers, before and 2-3 weeks following the first booster vaccine dose. Participants were assessed for anti-spike (RBD) antibody titer, neutralizing antibodies against B.1.617.2 (Delta) and B.1.1.529 (Omicron) variants, spike-specific T-cell responses by FACS and infection outbreak after the first and second booster. Results: Anti-spike antibody titer was significantly increased following the booster, with reduced humoral and cellular response in the dialysis patients. Neutralizing antibody levels increased significantly after the booster dose, with an inferior effect (≤2 fold) against Omicron compared with the Delta variant. Furthermore, CD4+ and CD8+ T-cell activation by Delta spike protein was preserved in 70% of PBMCs from the dialysis patients. A second booster dose tended to reduce breakthrough infections in the dialysis patients. Conclusions: Until the release of an updated vaccine, BNT162b2 booster doses will improve the humoral and cell-mediated immunity against variants. These findings support the importance of repetitive booster doses for hemodialysis patients.
Project description:BackgroundIn December 2020, Israel began a mass vaccination campaign against coronavirus disease 2019 (Covid-19) by administering the BNT162b2 vaccine, which led to a sharp curtailing of the outbreak. After a period with almost no cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, a resurgent Covid-19 outbreak began in mid-June 2021. Possible reasons for the resurgence were reduced vaccine effectiveness against the delta (B.1.617.2) variant and waning immunity. The extent of waning immunity of the vaccine against the delta variant in Israel is unclear.MethodsWe used data on confirmed infection and severe disease collected from an Israeli national database for the period of July 11 to 31, 2021, for all Israeli residents who had been fully vaccinated before June 2021. We used a Poisson regression model to compare rates of confirmed SARS-CoV-2 infection and severe Covid-19 among persons vaccinated during different time periods, with stratification according to age group and with adjustment for possible confounding factors.ResultsAmong persons 60 years of age or older, the rate of infection in the July 11-31 period was higher among persons who became fully vaccinated in January 2021 (when they were first eligible) than among those fully vaccinated 2 months later, in March (rate ratio, 1.6; 95% confidence interval [CI], 1.3 to 2.0). Among persons 40 to 59 years of age, the rate ratio for infection among those fully vaccinated in February (when they were first eligible), as compared with 2 months later, in April, was 1.7 (95% CI, 1.4 to 2.1). Among persons 16 to 39 years of age, the rate ratio for infection among those fully vaccinated in March (when they were first eligible), as compared with 2 months later, in May, was 1.6 (95% CI, 1.3 to 2.0). The rate ratio for severe disease among persons fully vaccinated in the month when they were first eligible, as compared with those fully vaccinated in March, was 1.8 (95% CI, 1.1 to 2.9) among persons 60 years of age or older and 2.2 (95% CI, 0.6 to 7.7) among those 40 to 59 years of age; owing to small numbers, the rate ratio could not be calculated among persons 16 to 39 years of age.ConclusionsThese findings indicate that immunity against the delta variant of SARS-CoV-2 waned in all age groups a few months after receipt of the second dose of vaccine.
Project description:Coronavirus disease 2019 (COVID-19) booster vaccination has been implemented globally in the midst of surges in infection due to the Delta and Omicron variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The objective of the present study was to present a framework to estimate the proportion of the population that is immune to symptomatic SARS-CoV-2 infection with the Omicron variant (immune proportion) in Japan, considering the waning of immunity resulting from vaccination and naturally acquired infection. We quantified the decay rate of immunity against symptomatic infection with Omicron conferred by the second and third doses of COVID-19 vaccine. We estimated the current and future vaccination coverage for the second and third vaccine doses from February 17, 2021 to August 1, 2022 and used data on the confirmed COVID-19 incidence from February 17, 2021 to April 10, 2022. From this information, we estimated the age-specific immune proportion over the period from February 17, 2021 to August 1, 2022. Vaccine-induced immunity, conferred by the second vaccine dose in particular, was estimated to rapidly wane. There were substantial variations in the estimated immune proportion by age group because each age cohort experienced different vaccination rollout timing and speed as well as a different infection risk. Such variations collectively contributed to heterogeneous immune landscape trajectories over time and age. The resulting prediction of the proportion of the population that is immune to symptomatic SARS-CoV-2 infection could aid decision-making on when and for whom another round of booster vaccination should be considered. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".
Project description:For infectious diseases where immunization can offer lifelong protection, a variety of simple models can be used to explain the utility of vaccination as a control method. However, for many diseases, immunity wanes over time and is subsequently enhanced (boosted) by asymptomatic encounters with the infection. The study of this type of epidemiological process requires a model formulation that can capture both the within-host dynamics of the pathogen and immune system as well as the associated population-level transmission dynamics. Here, we parametrize such a model for measles and show how vaccination can have a range of unexpected consequences as it reduces the natural boosting of immunity as well as reducing the number of naive susceptibles. In particular, we show that moderate waning times (40-80 years) and high levels of vaccination (greater than 70%) can induce large-scale oscillations with substantial numbers of symptomatic cases being generated at the peak. In addition, we predict that, after a long disease-free period, the introduction of infection will lead to far larger epidemics than that predicted by standard models. These results have clear implications for the long-term success of any vaccination campaign and highlight the need for a sound understanding of the immunological mechanisms of immunity and vaccination.
Project description:Several lines of evidence suggest that binding SARS-CoV-2 antibodies such as anti-SARS-CoV-2 RBD IgG (anti-RBD) and neutralising antibodies (NA) are correlates of protection against SARS-CoV-2, and the correlation of anti-RBD and NA is very high. The effectiveness (VE) of BNT162b2 in preventing SARS-CoV-2 infection wanes over time, and this reduction is mainly associated with waning immunity, suggesting that the kinetics of antibodies reduction might be of interest to predict VE. In a study of 97 health care workers (HCWs) vaccinated with the BNT162b2 vaccine, we assessed the kinetics of anti-RBD 30-250 days after vaccination using 388 individually matched plasma samples. Anti-RBD levels declined by 85%, 92%, and 95% at the 4th, 6th, and 8th month from the peak, respectively. The kinetics were estimated using the trajectories of anti-RBD by various models. The restricted cubic splines model had a better fit to the observed data. The trajectories of anti-RBD declines were statistically significantly lower for risk factors of severe COVID-19 and the absence of vaccination side effects. Moreover, previous SARS-CoV-2 infection was associated with divergent trajectories consistent with a slower anti-RBD decline over time. These results suggest that anti-RBD may serve as a harbinger for vaccine effectiveness (VE), and it should be explored as a predictor of breakthrough infections and VE.
Project description:Several clinical trials have shown that the humoral response produced by anti-spike antibodies elicited by coronavirus disease 2019 (COVID-19) vaccines gradually declines. The kinetics, durability and influence of epidemiological and clinical factors on cellular immunity have not been fully elucidated. We analyzed cellular immune responses elicited by BNT162b2 mRNA vaccines in 321 health care workers using whole blood interferon-gamma (IFN-γ) release assays. IFN-γ, induced by CD4 + and CD8 + T cells stimulated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike epitopes (Ag2), levels were highest at 3 weeks after the second vaccination (6 W) and decreased by 37.4% at 3 months (4 M) and 60.0% at 6 months (7 M), the decline of which seemed slower than that of anti-spike antibody levels. Multiple regression analysis revealed that the levels of IFN-γ induced by Ag2 at 7 M were significantly correlated with age, dyslipidemia, focal adverse reactions to full vaccination, lymphocyte and monocyte counts in whole blood, Ag2 levels before the second vaccination, and Ag2 levels at 6 W. We clarified the dynamics and predictive factors for the long-lasting effects of cellular immune responses. The results emphasize the need for a booster vaccine from the perspective of SARS-CoV-2 vaccine-elicited cellular immunity.
Project description:The emergence of the new SARS-CoV-2 Omicron variant, which is known to accumulate a huge number of mutations when compared to other variants, brought to light the concern about vaccine escape, especially from the neutralization by antibodies induced by vaccination. In this scenario, we evaluated the impact on antibody neutralization induction, against Omicron variant, by a booster dose of BNT162b2 mRNA vaccine after the CoronaVac primary vaccination scheme. The percentage of seroconverted individuals 30 and 60 days after CoronaVac scheme was 17% and 10%, respectively. After booster dose administration, the seroconvertion rate increased to 76.6%. The neutralization mean titer against Omicron in the CoronaVac protocol decreased over time, but after the booster dose, the mean titer increased 43.1 times, indicating a positive impact of this vaccine combination in the serological immune response.