Project description:ObjectiveTo estimate waning of covid-19 vaccine effectiveness over six months after second dose.DesignCohort study, approved by NHS England.SettingLinked primary care, hospital, and covid-19 records within the OpenSAFELY-TPP database.ParticipantsAdults without previous SARS-CoV-2 infection were eligible, excluding care home residents and healthcare professionals.ExposuresPeople who had received two doses of BNT162b2 or ChAdOx1 (administered during the national vaccine rollout) were compared with unvaccinated people during six consecutive comparison periods, each of four weeks.Main outcome measuresAdjusted hazard ratios for covid-19 related hospital admission, covid-19 related death, positive SARS-CoV-2 test, and non-covid-19 related death comparing vaccinated with unvaccinated people. Waning vaccine effectiveness was quantified as ratios of adjusted hazard ratios per four week period, separately for subgroups aged ≥65 years, 18-64 years and clinically vulnerable, 40-64 years, and 18-39 years.Results1 951 866 and 3 219 349 eligible adults received two doses of BNT162b2 and ChAdOx1, respectively, and 2 422 980 remained unvaccinated. Waning of vaccine effectiveness was estimated to be similar across outcomes and vaccine brands. In the ≥65 years subgroup, ratios of adjusted hazard ratios for covid-19 related hospital admission, covid-19 related death, and positive SARS-CoV-2 test ranged from 1.19 (95% confidence interval 1.14 to 1.24)to 1.34 (1.09 to 1.64) per four weeks. Despite waning vaccine effectiveness, rates of covid-19 related hospital admission and death were substantially lower among vaccinated than unvaccinated adults up to 26 weeks after the second dose, with estimated vaccine effectiveness ≥80% for BNT162b2, and ≥75% for ChAdOx1. By weeks 23-26, rates of positive SARS-CoV-2 test in vaccinated people were similar to or higher than in unvaccinated people (adjusted hazard ratios up to 1.72 (1.11 to 2.68) for BNT162b2 and 1.86 (1.79 to 1.93) for ChAdOx1).ConclusionsThe rate at which estimated vaccine effectiveness waned was consistent for covid-19 related hospital admission, covid-19 related death, and positive SARS-CoV-2 test and was similar across subgroups defined by age and clinical vulnerability. If sustained to outcomes of infection with the omicron variant and to booster vaccination, these findings will facilitate scheduling of booster vaccination.
Project description:General population studies have shown strong humoral response following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination with subsequent waning of anti-spike antibody levels. Vaccine-induced immune responses are often attenuated in frail and older populations, but published data are scarce. We measured SARS-CoV-2 anti-spike antibody levels in long-term care facility residents and staff following a second vaccination dose with Oxford-AstraZeneca or Pfizer-BioNTech. Vaccination elicited robust antibody responses in older residents, suggesting comparable levels of vaccine-induced immunity to that in the general population. Antibody levels are higher after Pfizer-BioNTech vaccination but fall more rapidly compared to Oxford-AstraZeneca recipients and are enhanced by prior infection in both groups.
Project description:We investigated thrombocytopenic, thromboembolic and hemorrhagic events following a second dose of ChAdOx1 and BNT162b2 using a self-controlled case series analysis. We used a national prospective cohort with 2.0 million(m) adults vaccinated with two doses of ChAdOx or 1.6 m with BNT162b2. The incidence rate ratio (IRR) for idiopathic thrombocytopenic purpura (ITP) 14-20 days post-ChAdOx1 second dose was 2.14, 95% confidence interval (CI) 0.90-5.08. The incidence of ITP post-second dose ChAdOx1 was 0.59 (0.37-0.89) per 100,000 doses. No evidence of an increased risk of CVST was found for the 0-27 day risk period (IRR 0.83, 95% CI 0.16 to 4.26). However, few (≤5) events arose within this risk period. It is perhaps noteworthy that these events all clustered in the 7-13 day period (IRR 4.06, 95% CI 0.94 to 17.51). No other associations were found for second dose ChAdOx1, or any association for second dose BNT162b2 vaccination. Second dose ChAdOx1 vaccination was associated with increased borderline risks of ITP and CVST events. However, these events were rare thus providing reassurance about the safety of these vaccines. Further analyses including more cases are required to determine more precisely the risk profile for ITP and CVST after a second dose of ChAdOx1 vaccine.
Project description:The duration of protection of the third (booster) dose of the BioNTech/Pfizer BNT162b2 mRNA Coronavirus Disease 2019 vaccine has been the subject of recent investigations, as global discussions around the necessity and effectiveness of a fourth dose are already underway. By conducting a retrospective study implementing a test-negative case-control design, analyzing 546,924 PCR tests performed throughout January 2022 by 389,265 persons who received at least two doses, we find that the effectiveness in each month-since-vaccination decreases significantly. Compared to those vaccinated five months prior to the outcome period, on August 2021, relative protection against infection waned from 53.4% a month after vaccination to 16.5% three months after vaccination. These results suggest that there is a significant waning of vaccine effectiveness against the Omicron variant of the third dose of the BNT162b2 vaccine within a few months after administration. Additional information could assist to comprehensively estimate the effectiveness of the three-dose-strategy.
Project description:BackgroundAfter exposure to SARS-CoV-2 and/or vaccination there is an increase in serum antibody titers followed by a non-linear waning. Our aim was to find out if this waning of antibody titers would fit to a mathematical model.MethodsWe analyzed anti-RBD (receptor binding domain) IgG antibody titers and the breakthrough infections over a ten-month period following the second dose of the mRNA BNT162b2 (Pfizer-BioNtech.) vaccine, in a cohort of 54 health-care workers (HCWs) who were either never infected with SARS-CoV-2 (naïve, nHCW group, n=27) or previously infected with the virus (experienced, eHCW group, n=27). Two mathematical models, exponential and power law, were used to quantify antibody waning kinetics, and we compared the relative quality of the goodness of fit to the data between both models was compared using the Akaik Information Criterion.ResultsWe found that the waning slopes were significantly more pronounced for the naïve when compared to the experienced HCWs in exponential (p-value: 1.801E-9) and power law (p-value: 9.399E-13) models. The waning of anti-RBD IgG antibody levels fitted significantly to both exponential (average-R2: 0.957 for nHCW and 0.954 for eHCW) and power law (average-R2: 0.991 for nHCW and 0.988 for eHCW) models, with a better fit to the power law model. In the nHCW group, titers would descend below an arbitrary 1000-units threshold at a median of 210.6 days (IQ range: 74.2). For the eHCW group, the same risk threshold would be reached at 440.0 days (IQ range: 135.2) post-vaccination.ConclusionTwo parsimonious models can explain the anti-RBD IgG antibody titer waning after vaccination. Regardless of the model used, eHCWs have lower waning slopes and longer persistence of antibody titers than nHCWs. Consequently, personalized vaccination booster schedules should be implemented according to the individual persistence of antibody levels.
Project description:BackgroundChAdOx1 and BNT162b2 vaccines are currently commonly used against coronavirus disease 2019 worldwide. Our study was designed to determine the serostatus and relative levels of anti-S and neutralizing antibodies in patients who were administered either ChAdOx1 or BNT162b2 vaccine. In addition, we investigated whether the antibody response to each vaccine differed according to sex and age.MethodsHealthcare workers (HCWs) at a general hospital who were vaccinated with two doses of either ChAdOx1 or BNT162b2 were invited to participate in this prospective cohort study. Blood samples of HCWs vaccinated with both ChAdOx1 doses over a period of 12 weeks were collected at weeks 4 and 8 post first vaccination and 2 weeks post second vaccination. Blood samples of HCWs vaccinated with BNT162b2 were collected in the third week after the first dose, and the second dose was then administered on the same day; two weeks post second dose (5 weeks after the first dose), blood samples were collected to assess the antibody response. The titers of anti-S antibodies against the severe acute respiratory syndrome coronavirus 2 spike (S) protein receptor-binding domain and the neutralizing antibodies in the collected blood were evaluated.ResultsOf the 309 HCWs enrolled in the study, 205 received ChAdOx1 and 104 received BNT162b2. Blood samples from participants receiving either the ChAdOx1 or BNT162b2 vaccine exhibited substantial anti-S and neutralizing antibody seropositivity subsequent to the second dose. All participants (100%) from both vaccine groups were seropositive for anti-S antibody, while 98% (201/205) of ChAdOx1-vaccinated individuals and 100% (104/104) of BNT162b2-vaccinated individuals were seropositive for neutralizing antibodies. The median levels of anti-S and neutralizing antibodies were significantly higher in the BNT162b2-vaccinated group than the ChAdOx1-vaccinated group; in particular, anti-S antibody titers of 1,020 (interquartile range, 571.0-1,631.0) U/mL vs. 2,360 (1,243-2,500) U/mL, P < 0.05, were recorded for the ChAdOx1 and BNT162b2 groups, respectively, and neutralizing antibody titers of 85.0 (65.9-92.1%) vs. 95.8 (94.4-96.6%), P < 0.05, were recorded for the ChAdOx1 and BNT162b2 groups, respectively. In the ChAdOx1 vaccine group, the neutralizing antibody level was significantly higher in women than in men (85.7 [70.3-92.5%] vs. 77.7 [59.2-91.0%], P < 0.05); however, the neutralizing antibody titer in the BNT162b2 vaccine group did not vary between the two sexes (95.9 [95.2-96.6%] vs. 95.2 [93.5-96.3%], P = 0.200). Analysis of the correlation of antibody profiles with age revealed that the levels of anti-S antibodies and signal inhibition rate (SIR) of neutralizing antibodies decreased significantly with age.ConclusionBoth the ChAdOx1- and BNT162b2-vaccinated groups showed high seropositivity for anti-S and neutralizing antibodies. The SIR of neutralizing antibodies in the ChAdOx1 vaccine group was higher in women than in men. Enhanced antibody responses were observed in participants vaccinated with BNT162b2 compared to those vaccinated with the ChAdOx1 vaccine.
Project description:BackgroundDuration of post-vaccination protection against COVID-19 in nursing home (NH) residents is a critical issue. The objective of this study was to estimate the duration of the IgG(S) response to the mRNA BNT162b2 vaccine in NH residents with (COV-Yes) or without (COV-No) history of SARS-CoV-2 infection.MethodsA 574 COV-Yes and COV-No NH residents were included in 2 cohorts: Main (n = 115, median age 87 years) or Confirmatory (n = 459, median age 89 years). IgG(S) quantification was carried out at three different time points following the BNT162b2 vaccine: three (1st) and seven (2nd) months after the 2nd dose, and 1 month after the 3rd dose (3rd quantification) in the Main cohort, and twice (2nd and 3rd) in the Confirmatory cohort. The seroneutralization capacity according to COVID-19 history was also measured in a subgroup of patients.ResultsNeutralization capacity was strongly correlated with IgG(S) levels (R2 :76%) without any difference between COV-Yes and COV-No groups for the same levels of IgG(S). After the 2nd dose, duration of the assumed robust protection (IgG(S) >264 BAU/ml) was two-fold higher in the COV-Yes vs. COV-No group: 12.60 (10.69-14.44) versus 5.76 (3.91-8.64) months, with this advantage mainly due to the higher IgG(S) titers after the 2nd dose and secondary to a slower decay over time. After the 3rd dose, duration of robust protection was estimated at 11.87 (9.88-14.87) (COV-Yes) and 8.95 (6.85-11.04) (COV-No) months. These results were similar in both cohorts.Conclusions and relevanceIn old subjects living in NH, history of SARS-CoV-2 infection provides a clear advantage in the magnitude and duration of high IgG(S) titers following the 2nd dose. Importantly, the 3rd dose induces a much more pronounced IgG(S) response than the 2nd dose in COV-No subjects, the effect of which should be able to ensure a prolonged protection against severe forms of COVID-19 in these subjects.