Project description:Prostate-specific membrane antigen (PSMA) is a well-recognized target for identification and therapy of a variety of cancers. Here we report five (64)Cu-labeled inhibitors of PSMA, [(64)Cu]3-7, which are based on the lysine-glutamate urea scaffold and utilize a variety of macrocyclic chelators, namely NOTA(3), PCTA(4), Oxo-DO3A(5), CB-TE2A(6), and DOTA(7), in an effort to determine which provides the most suitable pharmacokinetics for in vivo PET imaging. [(64)Cu]3-7 were prepared in high radiochemical yield (60-90%) and purity (>95%). Positron emission tomography (PET) imaging studies of [(64)Cu]3-7 revealed specific accumulation in PSMA-expressing xenografts (PSMA+ PC3 PIP) relative to isogenic control tumor (PSMA- PC3 flu) and background tissue. The favorable kinetics and high image contrast provided by CB-TE2A chelated [(64)Cu]6 suggest it as the most promising among the candidates tested. That could be due to the higher stability of [(64)Cu]CB-TE2A as compared with [(64)Cu]NOTA, [(64)Cu]PCTA, [(64)Cu]Oxo-DO3A, and [(64)Cu]DOTA chelates in vivo.
Project description:BackgroundProstate-specific membrane antigen (PSMA) is a cell surface enzyme that is highly expressed in prostate cancer (PCa) and is currently being extensively explored as a promising target for molecular imaging in a variety of clinical contexts. Novel antibody and small-molecule PSMA radiotracers labeled with a variety of radionuclides for positron emission tomography (PET) imaging applications have been developed and explored in recent studies.MethodsA great deal of progress has been made in defining the clinical utility of this class of PET agents through predominantly small and retrospective clinical studies. The most compelling data to date has been in the setting of biochemically recurrent PCa, where PSMA-targeted radiotracers have been found to be superior to conventional imaging and other molecular imaging agents for the detection of locally recurrent and metastatic PCa.ResultsEarly data, however, suggest that initial lymph node staging before definitive therapy in high-risk primary PCa patients may be limited, although intraoperative guidance may still hold promise. Other examples of potential promising applications for PSMA PET imaging include non-invasive characterization of primary PCa, staging and treatment planning for PSMA-targeted radiotherapeutics, and guidance of focal therapy for oligometastatic disease.ConclusionsHowever, all of these indications and applications for PCa PSMA PET imaging are still lacking and require large, prospective, systematic clinical trials for validation. Such validation trials are needed and hopefully will be forthcoming as the fields of molecular imaging, urology, radiation oncology and medical oncology continue to define and refine the utility of PSMA-targeted PET imaging to improve the management of PCa patients.
Project description:PurposeWe present here a Zr-89-labeled inhibitor of prostate-specific membrane antigen (PSMA) as a complement to the already established F-18- or Ga-68-ligands.ProceduresThe precursor PSMA-DFO (ABX) was used for Zr-89-labeling. This is not an antibody, but a peptide analogue of the precursor for the production of [177Lu]Lu-PSMA-617. The ligand [89Zr]Zr-PSMA-DFO was compared with [68Ga]Ga-PSMA-11 and [18F]F-JK-PSMA-7 in vitro by determination of the Kd value, cellular uptake, internalization in LNCaP cells, biodistribution studies with LNCaP prostate tumor xenografts in mice, and in vivo by small-animal PET imaging in LNCaP tumor mouse models. A first-in-human PET was performed with [89Zr]Zr-PSMA-DFO on a patient presenting with a biochemical recurrence after brachytherapy and an ambiguous intraprostatic finding with [18F]F-JK-PSMA-7 but histologically benign cells in a prostate biopsy 7 months previously.Results[89Zr]Zr-PSMA-DFO was prepared with a radiochemical purity ≥ 99.9% and a very high in vitro stability for up to 7 days at 37 °C. All radiotracers showed similar specific cellular binding and internalization, in vitro and comparable tumor uptake in biodistribution experiments during the first 5 h. The [89Zr]Zr-PSMA-DFO achieved significantly higher tumor/background ratios in LNCaP tumor xenografts (tumor/blood: 309 ± 89, tumor/muscle: 450 ± 38) after 24 h than [68Ga]Ga-PSMA-11 (tumor/blood: 112 ± 57, tumor/muscle: 58 ± 36) or [18F]F-JK-PSMA-7 (tumor/blood: 175 ± 30, tumor/muscle: 114 ± 14) after 4 h (p < 0.01). Small-animal PET imaging demonstrated in vivo that tumor visualization with [89Zr]Zr-PSMA-DFO is comparable to [68Ga]Ga-PSMA-11 or [18F]F-JK-PSMA-7 at early time points (1 h p.i.) and that PET scans up to 48 h p.i. clearly visualized the tumor at late time points. A late [89Zr]Zr-PSMA-DFO PET scan on a patient with biochemical recurrence (BCR) had demonstrated intensive tracer accumulation in the right (SUVmax 13.25, 48 h p.i.) and in the left prostate lobe (SUV max 9.47), a repeat biopsy revealed cancer cells on both sides.Conclusion[89Zr]Zr-PSMA-DFO is a promising PSMA PET tracer for detection of tumor areas with lower PSMA expression and thus warrants further clinical evaluation.
Project description:PURPOSE:To assess the ability of (N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-4-F-fluorobenzyl-L-cysteine) (F-DCFBC), a prostate-specific membrane antigen-targeted PET agent, to detect localized prostate cancer lesions in correlation with multiparametric MRI (mpMRI) and histopathology. METHODS:This Health Insurance Portability and Accountability Act of 1996-compliant, prospective, institutional review board-approved study included 13 evaluable patients with localized prostate cancer (median age, 62.8 years [range, 51-74 years]; median prostate-specific antigen, 37.5 ng/dL [range, 3.26-216 ng/dL]). Patients underwent mpMRI and F-DCFBC PET/CT within a 3 months' window. Lesions seen on mpMRI were biopsied under transrectal ultrasound/MRI fusion-guided biopsy, or a radical prostatectomy was performed. F-DCFBC PET/CT and mpMRI were evaluated blinded and separately for tumor detection on a lesion basis. For PET image analysis, MRI and F-DCFBC PET images were fused by using software registration; imaging findings were correlated with histology, and uptake of F-DCFBC in tumors was compared with uptake in benign prostatic hyperplasia nodules and normal peripheral zone tissue using the 80% threshold SUVmax. RESULTS:A total of 25 tumor foci (mean size, 1.8 cm; median size, 1.5 cm; range, 0.6-4.7 cm) were histopathologically identified in 13 patients. Sensitivity rates of F-DCFBC PET/CT and mpMRI were 36% and 96%, respectively, for all tumors. For index lesions, the largest tumor with highest Gleason score, sensitivity rates of F-DCFBC PET/CT and mpMRI were 61.5% and 92%, respectively. The average SUVmax for primary prostate cancer was higher (5.8 ± 4.4) than that of benign prostatic hyperplasia nodules (2.1 ± 0.3) or that of normal prostate tissue (2.1 ± 0.4) at 1 hour postinjection (P = 0.0033). CONCLUSIONS:The majority of index prostate cancers are detected with F-DCFBC PET/CT, and this may be a prognostic indicator based on uptake and staging. However, for detecting prostate cancer with high sensitivity, it is important to combine prostate-specific membrane antigen PET/CT with mpMRI.
Project description:Gallium-68 is a generator-produced radionuclide for positron emission tomography (PET) that is being increasingly used for radiolabeling of tumor-targeting peptides. Compounds [(68)Ga]3 and [(68)Ga]6 are high-affinity urea-based inhibitors of the prostate-specific membrane antigen (PSMA) that were synthesized in decay-uncorrected yields ranging from 60% to 70% and radiochemical purities of more than 99%. Compound [(68)Ga]3 demonstrated 3.78 +/- 0.90% injected dose per gram of tissue (%ID/g) within PSMA+ PIP tumor at 30 min postinjection, while [(68)Ga]6 showed a 2 h PSMA+ PIP tumor uptake value of 3.29 +/- 0.77 %ID/g. Target (PSMA+ PIP) to nontarget (PSMA- flu) ratios were 4.6 and 18.3, respectively, at those time points. Both compounds delineated tumor clearly by small animal PET. The urea series of imaging agents for PSMA can be radiolabeled with (68)Ga, a cyclotron-free isotope useful for clinical PET studies, with maintenance of target specificity.
Project description:Focal therapy of prostate cancer (PCa) is currently of great interest, but a metric of success. other than biopsy, is not yet available. In a patient with a repeatedly negative MRI and negative systematic biopsies, a scan employing the radioisotope 68Ga-PSMA-11 PET/CT identified a PSMA-avid hotspot in the prostate. PSMA-guided biopsy confirmed the diagnosis of a clinically-significant PCa. Following ablation of the lesion with high-intensity focused ultrasound (HIFU), the PSMA-avid lesion disappeared and targeted biopsy confirmed a fibrotic scar with no residual cancer. PSMA imaging may have a role in guiding diagnosis, focal ablation, and follow-up of men with PCa.
Project description:The repertoire of methods for the detection and chemotherapeutic treatment of prostate cancer (PCa) is currently limited. Prostate-specific membrane antigen (PSMA) is overexpressed in PCa tumors and can be exploited for both imaging and drug delivery. We developed and characterized four nanobodies that present tight and specific binding and internalization into PSMA+ cells and that accumulate specifically in PSMA+ tumors. We then conjugated one of these nanobodies to the cytotoxic drug doxorubicin, and we show that the conjugate internalizes specifically into PSMA+ cells, where the drug is released and induces cytotoxic activity. In vivo studies show that the extent of tumor growth inhibition is similar when mice are treated with commercial doxorubicin and with a 42-fold lower amount of the nanobody-conjugated doxorubicin, attesting to the efficacy of the conjugated drug. These data highlight nanobodies as promising agents for the imaging of PCa tumors and for the targeted delivery of chemotherapeutic drugs.
Project description:To extend our development of new imaging agents targeting the prostate-specific membrane antigen (PSMA), we have used the versatile intermediate 2-[3-(5-amino-1-carboxy-pentyl)-ureido]-pentanedioic acid (Lys-C(O)-Glu), which allows ready incorporation of radiohalogens for single photon emission computed tomography (SPECT) and positron emission tomography (PET). We prepared 2-[3-[1-carboxy-5-(4-[(125)I]iodo-benzoylamino)-pentyl]-ureido]-pentanedioic acid ([(125)I]3), 2-[3-[1-carboxy-5-(4-[(18)F]fluoro-benzoylamino)-pentyl]-ureido]-pentanedioic acid ([(18)F]6), and 2-(3-[1-carboxy-5-[(5-[(125)I]iodo-pyridine-3-carbonyl)-amino]-pentyl]-ureido)-pentanedioic acid ([(125)I]8) in 65-80% (nondecay-corrected), 30-35% (decay corrected), and 59-75% (nondecay-corrected) radiochemical yields. Compound [(125)I]3 demonstrated 8.8 +/- 4.7% injected dose per gram (%ID/g) within PSMA(+) PC-3 PIP tumor at 30 min postinjection, which persisted, with clear delineation of the tumor by SPECT. Similar tumor uptake values at early time points were demonstrated for [(18)F]6 (using PET) and [(125)I]8. Because of the many radiohalogenated moieties that can be attached via the epsilon amino group, the intermediate Lys-C(O)-Glu is an attractive template upon which to develop new imaging agents for prostate cancer.
Project description:The prostate-specific membrane antigen (PSMA) is a molecular target whose use has resulted in some of the most productive work toward imaging and treating prostate cancer over the past two decades. A wide variety of imaging agents extending from intact antibodies to low-molecular-weight compounds permeate the literature. In parallel there is a rapidly expanding pool of antibody-drug conjugates, radiopharmaceutical therapeutics, small-molecule drug conjugates, theranostics and nanomedicines targeting PSMA. Such productivity is motivated by the abundant expression of PSMA on the surface of prostate cancer cells and within the neovasculature of other solid tumors, with limited expression in most normal tissues. Animating the field is a variety of small-molecule scaffolds upon which the radionuclides, drugs, MR-detectable species and nanoparticles can be placed with relative ease. Among those, the urea-based agents have been most extensively leveraged, with expanding clinical use for detection and more recently for radiopharmaceutical therapy of prostate cancer, with surprisingly little toxicity. PSMA imaging of other cancers is also appearing in the clinical literature, and may overtake FDG for certain indications. Targeting PSMA may provide a viable alternative or first-line approach to managing prostate and other cancers.