Project description:To explore plausible reaction pathways of the cross-coupling reaction between a haloalkane and an aryl metal reagent catalyzed by an iron-phosphine complex, we examine the reaction of FeBrPh(SciOPP) 1 and bromocycloheptane employing density functional theory (DFT) calculations. Besides the cross-coupling, we also examined the competitive pathways of ?-hydrogen elimination to give the corresponding alkene byproduct. The DFT study on the reaction pathways explains the cross-coupling selectivity over the elimination in terms of FeI/FeII/FeIII mechanism which involves the generation of alkyl radical intermediates and their propagation in a chain reaction manner. The present study gives insight into the detailed molecular mechanic of the cross-coupling reaction and revises the FeII/FeII mechanisms previously proposed by us and others.
Project description:A palladium (II) complex {[(PhCH₂O)₂P(CH₃)₂CHNCH(CH₃)₂]₂PdCl₂} catalyzed Hiyama cross-coupling reaction between aryl bromides and arylsilanes has been developed. The substituted biaryls were produced in moderate to high yields, regardless of electron-withdrawing or electron-donating.
Project description:The advent of transition-metal catalysed strategies for forming new carbon-carbon bonds has revolutionized the field of organic chemistry, enabling the efficient synthesis of ligands, materials, and biologically active molecules. In cases where a single metal fails to promote a selective or efficient transformation, the synergistic cooperation of two distinct catalysts--multimetallic catalysis--can be used instead. Many important reactions rely on multimetallic catalysis, such as the Wacker oxidation of olefins and the Sonogashira coupling of alkynes with aryl halides, but this approach has largely been limited to the use of metals with distinct reactivities, with only one metal catalyst undergoing oxidative addition. Here, we demonstrate that cooperativity between two group 10 metal catalysts--(bipyridine)nickel and (1,3-bis(diphenylphosphino)propane)palladium--enables a general cross-Ullmann reaction (the cross-coupling of two different aryl electrophiles). Our method couples aryl bromides with aryl triflates directly, eliminating the use of arylmetal reagents and avoiding the challenge of differentiating between multiple carbon-hydrogen bonds that is required for direct arylation methods. Selectivity can be achieved without an excess of either substrate and originates from the orthogonal reactivity of the two catalysts and the relative stability of the two arylmetal intermediates. While (1,3-bis(diphenylphosphino)propane)palladium reacts preferentially with aryl triflates to afford a persistent intermediate, (bipyridine)nickel reacts preferentially with aryl bromides to form a transient, reactive intermediate. Although each catalyst forms less than 5 per cent cross-coupled product in isolation, together they are able to achieve a yield of up to 94 per cent. Our results reveal a new method for the synthesis of biaryls, heteroaryls, and dienes, as well as a general mechanism for the selective transfer of ligands between two metal catalysts. We anticipate that this reaction will simplify the synthesis of pharmaceuticals, many of which are currently made with pre-formed organometallic reagents, and lead to the discovery of new multimetallic reactions.
Project description:While the synthesis of biaryls has advanced rapidly in the past decades, cross-Ullman couplings of aryl chlorides, the most abundant aryl electrophiles, have remained elusive. Reported here is the first general cross-Ullman coupling of aryl chlorides with aryl triflates. The selectivity challenge associated with coupling an inert electrophile with a reactive one is overcome using a multimetallic strategy with the appropriate choice of additive. Studies demonstrate that LiCl is essential for effective cross-coupling by accelerating the reduction of Ni(II) to Ni(0) and counteracting autoinhibition of reduction at Zn(0) by Zn(II) salts. The modified conditions tolerate a variety of functional groups on either coupling partner (42 examples), and examples include a three-step synthesis of flurbiprofen.
Project description:The ability of tetraazalene radical bridging ligands to mediate exceptionally strong magnetic exchange coupling across a range of transition metal complexes is demonstrated. The redox-active bridging ligand N,N',N'',N'''-tetra(2-methylphenyl)-2,5-diamino-1,4-diiminobenzoquinone (NMePhLH2) was metalated to give the series of dinuclear complexes [(TPyA)2M2(NMePhL2-)]2+ (TPyA = tris(2-pyridylmethyl)amine, M = MnII, FeII, CoII). Variable-temperature dc magnetic susceptibility data for these complexes reveal the presence of weak superexchange interactions between metal centers, and fits to the data provide coupling constants of J = -1.64(1) and -2.16(2) cm-1 for M = MnII and FeII, respectively. One-electron reduction of the complexes affords the reduced analogues [(TPyA)2M2(NMePhL3-˙)]+. Following a slightly different synthetic procedure, the related complex [(TPyA)2CrIII2(NMePhL3-˙)]3+ was obtained. X-ray diffraction, cyclic voltammetry, and Mössbauer spectroscopy indicate the presence of radical NMePhL3-˙ bridging ligands in these complexes. Variable-temperature dc magnetic susceptibility data of the radical-bridged species reveal the presence of strong magnetic interactions between metal centers and ligand radicals, with simulations to data providing exchange constants of J = -626(7), -157(7), -307(9), and -396(16) cm-1 for M = CrIII, MnII, FeII, and CoII, respectively. Moreover, the strength of magnetic exchange in the radical-bridged complexes increases linearly with decreasing M-L bond distance in the oxidized analogues. Finally, ac magnetic susceptibility measurements reveal that [(TPyA)2Fe2(NMePhL3-˙)]+ behaves as a single-molecule magnet with a relaxation barrier of Ueff = 52(1) cm-1. These results highlight the ability of redox-active tetraazalene bridging ligands to enable dramatic enhancement of magnetic exchange coupling upon redox chemistry and provide a rare opportunity to examine metal-radical coupling trends across a transmetallic series of complexes.
Project description:Data in this article is associated with our research article, Electronic Properties of Fe Charge Transfer Complexes - a Combined Experimental and Theoretical Approach [1]. The oxidation and reduction potentials of fourteen FeII complexes are presented here, as extracted from the redox data obtained from its associated cyclic voltammograms, which were measured at scan rates varying from 0.05 V.s-1 to 5.00 V.s-1, under similar experimental conditions. Acetonitrile was used as solvent, and tetrabutylammonium hexafluorophosphate as supporting electrolyte. All data are reported versus the FeII redox couple in ferrocene.
Project description:The first enantioselective cross-electrophile coupling of aryl bromides with meso-epoxides to form trans-?-arylcycloalkanols is presented. The reaction is catalyzed by a combination of (bpy)NiCl2 and a chiral titanocene under reducing conditions. Yields range from 57 to 99% with 78-95% enantiomeric excess. The 30 examples include a variety of functional groups (ether, ester, ketone, nitrile, ketal, trifluoromethyl, sulfonamide, sulfonate ester), both aryl and vinyl halides, and five- to seven-membered rings. The intermediacy of a carbon radical is strongly suggested by the conversion of cyclooctene monoxide to an aryl [3.3.0]bicyclooctanol.
Project description:The metal-free, highly selective synthesis of biaryls poses a major challenge in organic synthesis. The scope and mechanism of a promising new approach to (hetero)biaryls by the photochemical fusion of aryl substituents tethered to a traceless sulfonamide linker (photosplicing) are reported. Interrogating photosplicing with varying reaction conditions and comparison of diverse synthetic probes (40 examples, including a suite of heterocycles) showed that the reaction has a surprisingly broad scope and involves neither metals nor radicals. Quantum chemical calculations revealed that the C-C bond is formed by an intramolecular photochemical process that involves an excited singlet state and traversal of a five-membered transition state, and thus consistent ipso-ipso coupling results. These results demonstrate that photosplicing is a unique aryl cross-coupling method in the excited state that can be applied to synthesize a broad range of biaryls.
Project description:Multichromophoric hydrogen-bonded assemblies 1(3) small middle dot(BAR)(6) are studied that bear a remarkably close resemblance to commelinin, a naturally occurring assembly responsible for an intense blue color of flowers. The incorporated chromophores exhibit a hypsochromic shift in the UV/visible (Vis) absorption maximum (Delta lambda(max) = 14 nm) compared with the free chromophores. In addition, the chiroptical properties of incorporated chromophores can be rationally controlled by changing the supramolecular chirality of the assembly. These properties have been used to study the stability of this type of assembly with UV and CD spectroscopy at concentrations far below the NMR sensitivity threshold (10(-4) M). The determined C(50%) values of 2-3 microM in benzene show the extremely high stability of these hydrogen-bonded assemblies.