Unknown

Dataset Information

0

Stimulation of Neurite Outgrowth in Cerebrocortical Neurons by Sodium Channel Activator Brevetoxin-2 Requires Both N-Methyl-D-aspartate Receptor 2B (GluN2B) and p21 Protein (Cdc42/Rac)-Activated Kinase 1 (PAK1).


ABSTRACT: N-methyl-D-aspartate (NMDA) receptors play a critical role in activity-dependent dendritic arborization, spinogenesis, and synapse formation by stimulating calcium-dependent signaling pathways. Previously, we have shown that brevetoxin 2 (PbTx-2), a voltage-gated sodium channel (VGSC) activator, produces a concentration-dependent increase in intracellular sodium [Na+]I and increases NMDA receptor (NMDAR) open probabilities and NMDA-induced calcium (Ca2+) influxes. The objective of this study is to elucidate the downstream signaling mechanisms by which the sodium channel activator PbTx-2 influences neuronal morphology in murine cerebrocortical neurons. PbTx-2 and NMDA triggered distinct Ca2+-influx pathways, both of which involved the NMDA receptor 2B (GluN2B). PbTx-2-induced neurite outgrowth in day in vitro 1 (DIV-1) neurons required the small Rho GTPase Rac1 and was inhibited by both a PAK1 inhibitor and a PAK1 siRNA. PbTx-2 exposure increased the phosphorylation of PAK1 at Thr-212. At DIV-5, PbTx-2 induced increases in dendritic protrusion density, p-cofilin levels, and F-actin throughout the dendritic arbor and soma. Moreover, PbTx-2 increased miniature excitatory post-synaptic currents (mEPSCs). These data suggest that the stimulation of neurite outgrowth, spinogenesis, and synapse formation produced by PbTx-2 are mediated by GluN2B and PAK1 signaling.

SUBMITTER: Mehrotra S 

PROVIDER: S-EPMC9504648 | biostudies-literature | 2022 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Stimulation of Neurite Outgrowth in Cerebrocortical Neurons by Sodium Channel Activator Brevetoxin-2 Requires Both N-Methyl-D-aspartate Receptor 2B (GluN2B) and p21 Protein (Cdc42/Rac)-Activated Kinase 1 (PAK1).

Mehrotra Suneet S   Pierce Marsha L ML   Dravid Shashank M SM   Murray Thomas F TF  

Marine drugs 20220831 9


N-methyl-D-aspartate (NMDA) receptors play a critical role in activity-dependent dendritic arborization, spinogenesis, and synapse formation by stimulating calcium-dependent signaling pathways. Previously, we have shown that brevetoxin 2 (PbTx-2), a voltage-gated sodium channel (VGSC) activator, produces a concentration-dependent increase in intracellular sodium [Na<sup>+</sup>]<sub>I</sub> and increases NMDA receptor (NMDAR) open probabilities and NMDA-induced calcium (Ca<sup>2+</sup>) influxes  ...[more]

Similar Datasets

| S-EPMC2064841 | biostudies-literature
| S-EPMC2683593 | biostudies-literature
| S-EPMC2835437 | biostudies-literature
| S-EPMC3731272 | biostudies-literature
| S-EPMC8606577 | biostudies-literature
2021-12-09 | GSE183174 | GEO
| S-EPMC2542865 | biostudies-literature
| S-EPMC3935412 | biostudies-literature
| S-EPMC3016852 | biostudies-literature
| S-EPMC3042488 | biostudies-literature