Unknown

Dataset Information

0

Feasibility and validity of a single camera CNN driven musculoskeletal model for muscle force estimation during upper extremity strength exercises: Proof-of-concept


ABSTRACT: Muscle force analysis can be essential for injury risk estimation and performance enhancement in sports like strength training. However, current methods to record muscle forces including electromyography or marker-based measurements combined with a musculoskeletal model are time-consuming and restrict the athlete's natural movement due to equipment attachment. Therefore, the feasibility and validity of a more applicable method, requiring only a single standard camera for the recordings, combined with a deep-learning model and musculoskeletal model is evaluated in the present study during upper-body strength exercises performed by five athletes. Comparison of muscle forces obtained by the single camera driven model against those obtained from a state-of-the art marker-based driven musculoskeletal model revealed strong to excellent correlations and reasonable RMSD's of 0.4–2.1% of the maximum force (Fmax) for prime movers, and weak to strong correlations with RMSD's of 0.4–0.7% Fmax for stabilizing and secondary muscles. In conclusion, a single camera deep-learning driven model is a feasible method for muscle force analysis in a strength training environment, and first validity results show reasonable accuracies, especially for prime mover muscle forces. However, it is evident that future research should investigate this method for a larger sample size and for multiple exercises.

SUBMITTER: Noteboom L 

PROVIDER: S-EPMC9541110 | biostudies-literature | 2022 Jan

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6817341 | biostudies-literature
| S-EPMC7303528 | biostudies-literature
| S-EPMC5592168 | biostudies-literature
| S-EPMC5736001 | biostudies-literature
| S-EPMC11531041 | biostudies-literature
| S-EPMC7571874 | biostudies-literature
| S-EPMC4575235 | biostudies-literature
| S-EPMC8170978 | biostudies-literature
| S-EPMC2874766 | biostudies-literature
| S-EPMC3476983 | biostudies-literature