Unknown

Dataset Information

0

Structurally engineered colloidal quantum dot phosphor using TiO2 photonic crystal backbone.


ABSTRACT: Photonic crystal (PhC) phosphor, in which the phosphor material is periodically modulated for an enhancement in color-conversion efficiency via resonant absorption of excitation photons, is a paradigm-shifting structural phosphor platform. Two-dimensional (2D) square-lattice PhC phosphor is currently considered the most advanced platform because of not only its high efficiency, but also its immunity to excitation polarization. In the present study, two major modifications are made to further improve the performance of the 2D PhC phosphor: increasing the refractive index contrast and planarizing the surface. The index contrast is improved by replacing the PhC backbone material with TiO2 whereas the surface planarization is achieved by removing excessive colloidal quantum dots from the surface. In comparison with the reference phosphor, the upgraded PhC phosphor exhibits ~59 times enhanced absorption (in simulations) and ~7 times enhanced emission (in experiments), both of which are unprecedentedly high. Our results not only brighten the viability and applicability of the PhC phosphor but also spur the phosphor development through structural engineering of phosphor materials.

SUBMITTER: Lee H 

PROVIDER: S-EPMC9626542 | biostudies-literature | 2022 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structurally engineered colloidal quantum dot phosphor using TiO<sub>2</sub> photonic crystal backbone.

Lee Hansol H   Lee Tae-Yun TY   Park Yeonsang Y   Cho Kyung-Sang KS   Rho Young-Geun YG   Choo Hyuck H   Jeon Heonsu H  

Light, science & applications 20221101 1


Photonic crystal (PhC) phosphor, in which the phosphor material is periodically modulated for an enhancement in color-conversion efficiency via resonant absorption of excitation photons, is a paradigm-shifting structural phosphor platform. Two-dimensional (2D) square-lattice PhC phosphor is currently considered the most advanced platform because of not only its high efficiency, but also its immunity to excitation polarization. In the present study, two major modifications are made to further imp  ...[more]

Similar Datasets

| S-EPMC7467567 | biostudies-literature
| S-EPMC10058900 | biostudies-literature
| S-EPMC10657373 | biostudies-literature
| S-EPMC6062237 | biostudies-literature
| S-EPMC9054048 | biostudies-literature
| S-EPMC8576758 | biostudies-literature
| S-EPMC6915722 | biostudies-literature
| S-EPMC6641499 | biostudies-literature
| S-EPMC11433277 | biostudies-literature
| S-EPMC6059941 | biostudies-literature