Unknown

Dataset Information

0

Identification of the znuA-encoded periplasmic zinc transport protein of Haemophilus ducreyi.


ABSTRACT: The znuA gene of Haemophilus ducreyi encodes a 32-kDa (mature) protein that has homology to both the ZnuA protein of Escherichia coli and the Pzp1 protein of H. influenzae; both of these latter proteins are members of a growing family of prokaryotic zinc transporters. Inactivation of the H. ducreyi 35000 znuA gene by insertional mutagenesis resulted in a mutant that grew more slowly than the wild-type parent strain in vitro unless ZnCl(2) was provided at a final concentration of 100 microM. Other cations tested did not restore growth of this H. ducreyi mutant to wild-type levels. The H. ducreyi ZnuA protein was localized to the periplasm, where it is believed to function as the binding component of a zinc transport system. Complementation of the znuA mutation with the wild-type H. ducreyi znuA gene provided in trans restored the ability of this H. ducreyi mutant to grow normally in the absence of exogenously added ZnCl2. The wild-type H. ducreyi znuA gene was also able to complement a H. influenzae pzp1 mutation. The H. ducreyi znuA isogenic mutant exhibited significantly decreased virulence (P = 0.0001) when tested in the temperature-dependent rabbit model for experimental chancroid. This decreased virulence was not observed when the znuA mutant was complemented with the wild-type H. ducreyi znuA gene provided in trans.

SUBMITTER: Lewis DA 

PROVIDER: S-EPMC96853 | biostudies-literature | 1999 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Identification of the znuA-encoded periplasmic zinc transport protein of Haemophilus ducreyi.

Lewis D A DA   Klesney-Tait J J   Lumbley S R SR   Ward C K CK   Latimer J L JL   Ison C A CA   Hansen E J EJ  

Infection and immunity 19991001 10


The znuA gene of Haemophilus ducreyi encodes a 32-kDa (mature) protein that has homology to both the ZnuA protein of Escherichia coli and the Pzp1 protein of H. influenzae; both of these latter proteins are members of a growing family of prokaryotic zinc transporters. Inactivation of the H. ducreyi 35000 znuA gene by insertional mutagenesis resulted in a mutant that grew more slowly than the wild-type parent strain in vitro unless ZnCl(2) was provided at a final concentration of 100 microM. Othe  ...[more]

Similar Datasets

| S-EPMC94989 | biostudies-literature
| S-EPMC2630496 | biostudies-literature
| S-EPMC7467640 | biostudies-literature
| S-EPMC2852322 | biostudies-literature
| S-EPMC107678 | biostudies-literature
| S-EPMC4696685 | biostudies-literature
| S-EPMC97321 | biostudies-literature
| S-EPMC128345 | biostudies-literature
| S-EPMC20567 | biostudies-literature
| PRJNA302860 | ENA