Unknown

Dataset Information

0

CRISPR base editing of cis-regulatory elements enables the perturbation of neurodegeneration-linked genes.


ABSTRACT: CRISPR technology has demonstrated broad utility for controlling target gene expression; however, there remains a need for strategies capable of modulating expression via the precise editing of non-coding regulatory elements. Here, we demonstrate that CRISPR base editors, a class of gene-modifying proteins capable of creating single-base substitutions in DNA, can be used to perturb gene expression via their targeted mutagenesis of cis-acting sequences. Using the promoter region of the human huntingtin (HTT) gene as an initial target, we show that editing of the binding site for the transcription factor NF-κB led to a marked reduction in HTT gene expression in base-edited cell populations. We found that these gene perturbations were persistent and specific, as a transcriptome-wide RNA analysis revealed minimal off-target effects resulting from the action of the base editor protein. We further demonstrate that this base-editing platform could influence gene expression in vivo as its delivery to a mouse model of Huntington's disease led to a potent decrease in HTT mRNA in striatal neurons. Finally, to illustrate the applicability of this concept, we target the amyloid precursor protein, showing that multiplex editing of its promoter region significantly perturbed its expression. These findings demonstrate the potential for base editors to regulate target gene expression.

SUBMITTER: Lim CKW 

PROVIDER: S-EPMC9734028 | biostudies-literature | 2022 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

CRISPR base editing of cis-regulatory elements enables the perturbation of neurodegeneration-linked genes.

Lim Colin K W CKW   McCallister Tristan X TX   Saporito-Magriña Christian C   McPheron Garrett D GD   Krishnan Ramya R   Zeballos C M Alejandra MA   Powell Jackson E JE   Clark Lindsay V LV   Perez-Pinera Pablo P   Gaj Thomas T  

Molecular therapy : the journal of the American Society of Gene Therapy 20220813 12


CRISPR technology has demonstrated broad utility for controlling target gene expression; however, there remains a need for strategies capable of modulating expression via the precise editing of non-coding regulatory elements. Here, we demonstrate that CRISPR base editors, a class of gene-modifying proteins capable of creating single-base substitutions in DNA, can be used to perturb gene expression via their targeted mutagenesis of cis-acting sequences. Using the promoter region of the human hunt  ...[more]

Similar Datasets

2022-08-24 | GSE204833 | GEO
| PRJNA842417 | ENA
| S-EPMC11419122 | biostudies-literature
2020-06-01 | GSE138860 | GEO
| S-EPMC5462860 | biostudies-literature
| S-EPMC7183636 | biostudies-literature
| S-EPMC7381381 | biostudies-literature
| S-EPMC8419749 | biostudies-literature
| S-EPMC7723518 | biostudies-literature
| S-EPMC9023296 | biostudies-literature