Unknown

Dataset Information

0

Inhibitory Effects of Nobiletin on Voltage-Gated Na+ Channel in Rat Ventricular Myocytes Based on Electrophysiological Analysis and Molecular Docking Method.


ABSTRACT: Nobiletin (NOB) has attracted much attention owing to its outstanding bioactivities. This study aimed to investigate its anti-arrhythmic effect through electrophysiological and molecular docking studies. We assessed the anti-arrhythmic effects of NOB using aconitine-induced ventricular arrhythmia in a rat model and the electrophysiological effects of NOB on rat cardiomyocytes utilizing whole-cell patch-clamp techniques. Moreover, we investigated the binding characters of NOB with rNav1.5, rNav1.5/QQQ, and hNaV1.5 via docking analysis, comparing them with amiodarone and aconitine. NOB pretreatment delayed susceptibility to ventricular premature and ventricular tachycardia and decreased the incidence of fatal ventricular fibrillation. Whole-cell patch-clamp assays demonstrated that the peak current density of the voltage-gated Na+ channel current was reversibly reduced by NOB in a concentration-dependent manner. The steady-state activation and recovery curves were shifted in the positive direction along the voltage axis, and the steady-state inactivation curve was shifted in the negative direction along the voltage axis, as shown by gating kinetics. The molecular docking study showed NOB formed a π-π stacking interaction with rNav1.5 and rNav1.5/QQQ upon Phe-1762, which is the homolog to Phe-1760 in hNaV1.5 and plays an important role in antiarrhythmic action This study reveals that NOB may act as a class I sodium channel anti-arrhythmia agent.

SUBMITTER: Gu Y 

PROVIDER: S-EPMC9736168 | biostudies-literature | 2022 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Inhibitory Effects of Nobiletin on Voltage-Gated Na<sup>+</sup> Channel in Rat Ventricular Myocytes Based on Electrophysiological Analysis and Molecular Docking Method.

Gu Youwei Y   Wang Jieru J   Li Mengting M   Zhong Fei F   Xiang Jie J   Xu Zhengxin Z  

International journal of molecular sciences 20221202 23


Nobiletin (NOB) has attracted much attention owing to its outstanding bioactivities. This study aimed to investigate its anti-arrhythmic effect through electrophysiological and molecular docking studies. We assessed the anti-arrhythmic effects of NOB using aconitine-induced ventricular arrhythmia in a rat model and the electrophysiological effects of NOB on rat cardiomyocytes utilizing whole-cell patch-clamp techniques. Moreover, we investigated the binding characters of NOB with rNav1.5, rNav1.  ...[more]

Similar Datasets

| S-EPMC7442036 | biostudies-literature
| S-EPMC5666337 | biostudies-literature
| S-EPMC9058222 | biostudies-literature
| S-EPMC10620092 | biostudies-literature
| S-EPMC10442390 | biostudies-literature
| S-EPMC10168311 | biostudies-literature
| S-EPMC2765308 | biostudies-literature
| S-EPMC6122921 | biostudies-literature
| S-EPMC5034366 | biostudies-literature
| S-EPMC10569700 | biostudies-literature