Unknown

Dataset Information

0

Diabatic and adiabatic transitions between Floquet states imprinted in coherent exciton emission in monolayer WSe2.


ABSTRACT: Floquet engineering is a promising way of controlling quantum system with photon-dressed states on an ultrafast time scale. So far, the energy structure of Floquet states in solids has been intensively investigated. However, the dynamical aspects of the photon-dressed states under ultrashort pulse have not been explored yet. Their dynamics become highly sensitive to the driving field transients, and thus, understanding them is crucial for ultrafast manipulation of a quantum state. Here, we observed the coherent exciton emission in monolayer WSe2 at room temperature at the appropriate photon energy and the field strength of the driving light pulse using high-harmonic spectroscopy. Together with numerical calculations, our measurements revealed that the coherent exciton emission spectrum reflects the diabatic and adiabatic dynamics of Floquet states of excitons. Our results provide a previosuly unexplored approach to Floquet engineering and lead to control of quantum materials through pulse shaping of the driving field.

SUBMITTER: Uchida K 

PROVIDER: S-EPMC9770970 | biostudies-literature | 2022 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Diabatic and adiabatic transitions between Floquet states imprinted in coherent exciton emission in monolayer WSe<sub>2</sub>.

Uchida Kento K   Kusaba Satoshi S   Nagai Kohei K   Ikeda Tatsuhiko N TN   Tanaka Koichiro K  

Science advances 20221221 51


Floquet engineering is a promising way of controlling quantum system with photon-dressed states on an ultrafast time scale. So far, the energy structure of Floquet states in solids has been intensively investigated. However, the dynamical aspects of the photon-dressed states under ultrashort pulse have not been explored yet. Their dynamics become highly sensitive to the driving field transients, and thus, understanding them is crucial for ultrafast manipulation of a quantum state. Here, we obser  ...[more]

Similar Datasets

| S-EPMC5382264 | biostudies-literature
| S-EPMC5095560 | biostudies-literature
| S-EPMC8531338 | biostudies-literature
| S-EPMC6554274 | biostudies-literature
| S-EPMC8569157 | biostudies-literature
| S-EPMC9680939 | biostudies-literature
| S-EPMC8752834 | biostudies-literature
| S-EPMC10500002 | biostudies-literature
| S-EPMC10273309 | biostudies-literature
| S-EPMC6237922 | biostudies-literature