Unknown

Dataset Information

0

Discontinuity in Equilibrium Wave-Current Ripple Size and Shape and Deep Cleaning Associated With Cohesive Sand-Clay Beds.


ABSTRACT: Mixtures of cohesive clay and noncohesive sand are widespread in many aquatic environments. Ripple dynamics in sand-clay mixtures have been studied under current-alone and wave-alone conditions but not combined wave-current conditions, despite their prevalence in estuaries and the coastal zone. The present flume experiments examine the effect of initial clay content, C 0, on ripples by considering a single wave-current condition and, for the first time, quantify how changing clay content of substrate impacts ripple dimensions during development. The results show inverse relationships between C 0 and ripple growth rates and clay winnowing transport rates out of the bed, which reduce as the ripples develop toward equilibrium. For C 0 ≤ 10.6%, higher winnowing rates lead to clay loss, and thus the presence of clean sand, far below the base of equilibrium ripples. This hitherto unquantified "deep-cleaning" of clay does not occur for C 0 > 10.6%, where clay-loss rates are much lower. The clay-loss behavior is associated with two distinct types of equilibrium combined flow ripples: (a) Large asymmetric ripples with dimensions and plan geometries comparable to their clean-sand counterparts for C 0 ≤ 10.6% and (b) small, flat ripples for C 0 > 10.6%. The 10.6% threshold, which may be specific to the experimental conditions, corresponds to a more general 8% threshold found beneath the ripple base, suggesting that clay content here must be <8% for clean-sand-like ripples to develop in sand-clay beds. This ripple-type discontinuity comprises a threefold reduction in ripple height, with notable implications for bed roughness.

SUBMITTER: Wu X 

PROVIDER: S-EPMC9786932 | biostudies-literature | 2022 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Discontinuity in Equilibrium Wave-Current Ripple Size and Shape and Deep Cleaning Associated With Cohesive Sand-Clay Beds.

Wu X X   Fernandez R R   Baas J H JH   Malarkey J J   Parsons Dan R DR  

Journal of geophysical research. Earth surface 20220923 9


Mixtures of cohesive clay and noncohesive sand are widespread in many aquatic environments. Ripple dynamics in sand-clay mixtures have been studied under current-alone and wave-alone conditions but not combined wave-current conditions, despite their prevalence in estuaries and the coastal zone. The present flume experiments examine the effect of initial clay content, <i>C</i> <sub>0</sub>, on ripples by considering a single wave-current condition and, for the first time, quantify how changing cl  ...[more]

Similar Datasets

| S-EPMC6615505 | biostudies-literature
| S-EPMC9214835 | biostudies-literature
| S-EPMC7007963 | biostudies-literature
| S-EPMC3046355 | biostudies-literature
| S-EPMC5291648 | biostudies-literature
| S-EPMC3949251 | biostudies-literature
| S-EPMC10689241 | biostudies-literature
| S-EPMC9640570 | biostudies-literature
| PRJNA930680 | ENA
| S-EPMC4824654 | biostudies-literature