Project description:Immunotherapies, such as monoclonal antibody therapy and checkpoint inhibitor therapy, have shown inspiring clinical effects for the treatment of cancer. Chimeric antigen receptor T (CAR-T) cells therapy was an efficacious therapeutic approach treating hematological malignancies and encouraging results have been achieved. Three kinds of CAR-T cell therapies, Kymriah (tisagenlecleucel), Yescarta (axicabtagene ciloleucel), were approved for clinical application in 2017 and Tecartus (brexucabtagene autoleucel) was approved in 2020. Despite some progress have been made in treating multiple hematologic tumors, threats still remain for the application of CAR-T cell therapy considering its toxicities and gaps in knowledge. To further comprehend present research status and trends, the review concentrates on CAR-T technologies, applications, adverse effects and safety measures about CAR-T cell therapy in hematological neoplasms. We believe that CAR-T cell therapy will exhibit superior safety and efficacy in the future and have potential to be a mainstream therapeutic choice for the elimination of hematologic tumor.
Project description:Cellular therapy for hematologic malignancies is a rapidly evolving field, with new iterations of novel constructs being developed at a rapid pace. Since the initial reports of chimeric antigen receptor T cell (CAR T cell)success in CD19+ B cell malignancies, multiple clinical trials of CAR T cell therapy directed to CD19 have led to the approval of this therapy by the FDA and the European Medicines Agency for specific indications. Despite strikingly similar efficacy, investigators at multiple centers participating in these studies have observed the nuances of each CAR T cell product, including variability in manufacturing, availability, and toxicity profiles. Here we review state-of-the-art clinical data on CD19-directed CAR T cell therapies in B cell hematologic malignancies, advances made in understanding and modeling associated toxicities, and several exciting advances and creative solutions for overcoming challenges with this therapeutic modality.
Project description:Chimeric antigen receptor (CAR) T-cell therapy has already achieved remarkable remissions in some difficult-to-treat patients with B-cell malignancies. Although the clinical experience in chronic lymphocytic leukemia (CLL) patients is limited, the proportion of remissions reached in this disease is clearly the lowest from the spectrum of B-cell tumors. In this review, we discuss the antigenic targets exploited in CLL CAR-T therapy, the determinants of favorable responses, as well as the mechanisms of treatment failure specific to this disease.
Project description:Chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment of B-cell lymphoid neoplasia and, in some instances, improved disease outcomes. Thus, six FDA-approved commercial CAR-T cell products that target antigens preferentially expressed on malignant B-cells or plasma cells have been introduced in the therapy of B-cell lymphomas, B-ALLs, and multiple myeloma. These therapeutic successes have triggered the application of CAR-T cell therapy to other hematologic tumors, including T-cell malignancies. However, the success of CAR-T cell therapies in T-cell neoplasms was considerably more limited due to the existence of some limiting factors, such as: 1) the sharing of mutual antigens between normal T-cells and CAR-T cells and malignant cells, determining fratricide events and severe T-cell aplasia; 2) the contamination of CAR-T cells used for CAR transduction with malignant T-cells. Allogeneic CAR-T products can avoid tumor contamination but raise other problems related to immunological incompatibility. In spite of these limitations, there has been significant progress in CD7- and CD5-targeted CAR-T cell therapy of T-cell malignancies in the last few years.
Project description:Chimeric antigen receptor (CAR) T-cells (CAR T-cells) are a promising therapeutic approach in treating hematological malignancies. CAR T-cells represent engineered autologous T-cells, expressing a synthetic CAR, targeting tumor-associated antigens (TAAs) independent of major histocompatibility complex (MHC) presentation. The most common target is CD19 on B-cells, predominantly used for the treatment of lymphoma and acute lymphocytic leukemia (ALL), leading to approval of five different CAR T-cell therapies for clinical application. Despite encouraging clinical results, treatment of other hematological malignancies such as acute myeloid leukemia (AML) remains difficult. In this review, we focus especially on CAR T-cell application in different hematological malignancies as well as strategies for overcoming CAR T-cell dysfunction and increasing their efficacy.
Project description:Chimeric antigen receptor T-cell (CAR-T) therapy has transformed the management of patients with relapsed/refractory (R/R) hematologic malignancies, including B-cell lymphomas and multiple myeloma (MM). While data pertaining to the efficacy and toxicity associated with CAR-T have been widely reported, there are limited data on long-term complications. We retrospectively analyzed 246 patients treated with CAR-T for R/R B-cell lymphoma (n = 228) and MM (n = 18) at Ohio State University from 2016 to 2022, with a minimum of two years of follow-up. The median age was 66 years, and the median number of prior treatments was four. With a median follow-up of 38 months (range 11-66), 21 patients (8.5%) developed a second primary malignancy (SPM), with non-melanoma skin cancer being the most common (52%), followed by hematologic malignancies (33%) and non-skin solid tumors (14%). Squamous cell carcinoma accounted for 38% of skin cancers, while myelodysplastic syndrome and acute myeloid leukemia were the predominant hematologic malignancies. Solid tumors included bladder, prostate, and breast cancer. The distinct pattern of SPMs suggests potential CAR-T-related risks, warranting vigilant post-treatment surveillance. Further studies are necessary to elucidate underlying mechanism and predictive factors and guide long-term management of SPM risk in CAR-T survivors.
Project description:Chimeric antigen receptor (CAR) T cells are patient T cells that are transduced with genetically engineered synthetic receptors to target a cancer cell surface antigen. The remarkable clinical response rates achieved by adoptive transfer of T cells that target CD19 in patients with leukemia and lymphoma have led to a growing number of clinical trials exploring CAR T-cell therapy for solid tumors. Herein, we review the evolution of adoptive T-cell therapy; highlight advances in CAR T-cell therapy for thoracic malignancies; and summarize the targets being investigated in clinical trials for patients with lung cancer, malignant pleural mesothelioma, and esophageal cancer. We further discuss the barriers to successfully translating CAR T-cell therapy for solid tumors and present strategies that have been investigated to overcome these hurdles.
Project description:In the past decade, the emergence of chimeric antigen receptor (CAR) T-cell therapy has led to a cellular immunotherapy revolution against various cancers. Although CAR-T cell therapies have demonstrated remarkable efficacy for patients with certain B cell driven hematological malignancies, further studies are required to broaden the use of CAR-T cell therapy against other hematological malignancies. Moreover, treatment failure still occurs for a significant proportion of patients. CAR antigen loss on cancer cells is one of the most common reasons for cancer relapse. Additionally, immune evasion can arise due to the hostile immunosuppressive tumor microenvironment and the impaired CAR-T cells in vivo persistence. Other than direct antitumor activity, the adverse effects associated with CAR-T cell therapy are another major concern during treatment. As a newly emerged treatment approach, numerous novel preclinical studies have proposed different strategies to enhance the efficacy and attenuate CAR-T cell associated toxicity in recent years. The major obstacles that impede promising outcomes for patients with hematological malignancies during CAR-T cell therapy have been reviewed herein, along with recent advancements being made to surmount them.
Project description:Opinion statementAlthough chimeric antigen receptor T cell immunotherapy has been successfully applied in patients with hematological malignancies, several obstacles still need to be overcome, such as high relapse rates and side effects. Overcoming the limitations of CAR-T cell therapy and boosting the efficacy of CAR-T cell therapy are urgent issues that must be addressed. The exploration of small-molecule compounds in combination with CAR-T cell therapies has achieved promising success in pre-clinical and clinical studies in recent years. Protein kinase inhibitors, demethylating drugs, HDAC inhibitors, PI3K inhibitors, immunomodulatory drugs, Akt inhibitors, mTOR inhibitors, and Bcl-2 inhibitors exhibited potential synergy in combination with CAR-T cell therapy. In this review, we will discuss the recent application of these combination therapies for improved outcomes of CAR-T cell therapy.