Unknown

Dataset Information

0

Fast model-free standardization and integration of single-cell transcriptomics data.


ABSTRACT: Single-cell transcriptomics datasets from the same anatomical sites generated by different research labs are becoming increasingly common. However, fast and computationally inexpensive tools for standardization of cell-type annotation and data integration are still needed in order to increase research inclusivity. To standardize cell-type annotation and integrate single-cell transcriptomics datasets, we have built a fast model-free integration method, named MASI (Marker-Assisted Standardization and Integration). MASI first identifies putative cell-type markers from reference data through an ensemble approach. Then, it converts gene expression matrix to cell-type score matrix with the identified putative cell-type markers for the purpose of cell-type annotation and data integration. Because of integration through cell-type markers instead of model inference, MASI can annotate approximately one million cells on a personal laptop, which provides a cheap computational alternative for the single-cell community. We benchmark MASI with other well-established methods and demonstrate that MASI outperforms other methods based on speed. Its performance for both tasks of data integration and cell-type annotation are comparable or even superior to these existing methods. To harness knowledge from single-cell atlases, we demonstrate three case studies that cover integration across biological conditions, surveyed participants, and research groups, respectively.

SUBMITTER: Xu Y 

PROVIDER: S-EPMC9901035 | biostudies-literature | 2023 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fast model-free standardization and integration of single-cell transcriptomics data.

Xu Yang Y   Kramann Rafael R   McCord Rachel Patton RP   Hayat Sikander S  

Research square 20230123


Single-cell transcriptomics datasets from the same anatomical sites generated by different research labs are becoming increasingly common. However, fast and computationally inexpensive tools for standardization of cell-type annotation and data integration are still needed in order to increase research inclusivity. To standardize cell-type annotation and integrate single-cell transcriptomics datasets, we have built a fast model-free integration method, named MASI (Marker-Assisted Standardization  ...[more]

Similar Datasets

| S-EPMC10144903 | biostudies-literature
| S-EPMC10825117 | biostudies-literature
| S-EPMC6884693 | biostudies-literature
| S-EPMC10695135 | biostudies-literature
| S-EPMC9235504 | biostudies-literature
| S-EPMC6687398 | biostudies-literature
| S-EPMC11258913 | biostudies-literature
| S-EPMC8070367 | biostudies-literature
| S-EPMC11236089 | biostudies-literature