Project description:Multifunctional N6-methyladenosine (m6A) has been revealed to be an important epigenetic component in various physiological and pathological processes, but its role in female ovarian aging remains unclear. Thus, we demonstrated m6A demethylase FTO downregulation and the ensuing increased m6A in granulosa cells (GCs) of human aged ovaries, while FTO-knockdown GCs showed faster aging-related phenotypes mediated. Using the m6A-RNA-sequence technique (m6A-seq), increased m6A was found in the FOS-mRNA-3'UTR, which is suggested to be an erasing target of FTO that slows the degradation of FOS-mRNA to upregulate FOS expression in GCs, eventually resulting in GC-mediated ovarian aging. FTO acts as a senescence-retarding protein via m6A, and FOS knockdown significantly alleviates the aging of FTO-knockdown GCs. Altogether, the abovementioned results indicate that FTO in GCs retards FOS-dependent ovarian aging, which is a potential diagnostic and therapeutic target against ovarian aging and age-related reproductive diseases.
Project description:Age-related macular degeneration (AMD) is the leading cause of vision loss and blindness among people over the age of 60. Vascular endothelial growth factor (VEGF) plays a major role in pathological angiogenesis in AMD. Herein, we present the development of an anti- human VEGF repebody, which is a small-sized protein binder consisting of leucine-rich repeat (LRR) modules. The anti-VEGF repebody selected through a phage-display was shown to have a high affinity and specificity for human VEGF. We demonstrate that this repebody effectively inhibits in vitro angiogenic cellular processes, such as proliferation and migration, by blocking the VEGF-mediated signaling pathway. The repebody was also shown to have a strong suppression effect on choroidal neovascularization (CNV) and vascular leakage in vivo. Our results indicate that the anti-VEGF repebody has a therapeutic potential for treating neovascular AMD as well as other VEGF-involved diseases including diabetic retinopathy and metastatic cancers.
Project description:PurposeThis study examined the role of the CSF1/CSF1Raxis in the crosstalk between choroidal vascular endothelial cells (CVECs) and macrophages during the formation of choroidal neovascularization (CNV).MethodsQuantitative reverse transcriptase (QRT)-PCR, Western blot and ELISA measured the production and release of CSF1 from human choroidal vascular endothelial cells (HCVECs) under hypoxic conditions. Western blot detected CSF1 released from HCVECs under hypoxic conditions that activated the PI3K/AKT/FOXO1 axis in human macrophages via binding to CSF1R. Transwell migration assay, qRT-PCR, and Western blot detected the effect of CSF1 released from HCVECs on macrophage migration and M2 polarization via the CSF1R/PI3K/AKT/FOXO1 pathway. Incorporation of 5-ethynyl-20-deoxyuridine, transwell migration, and tube formation assays detected the effects of CSF1/CSF1R on the behaviors of HCVECs. Fundus fluorescein angiography (FFA), indocyanine green angiography (ICGA), and immunofluorescence detected the effect of blockade of CSF1/CSF1R on mouse laser-induced CNV. Color fundus photograph, ICGA, and FFA detected CNV lesions in neovascular AMD (nAMD) patients. ELISA detected CSF1 and CSF1R in the aqueous humor of age-related cataract and nAMD patients.ResultsCSF1 released from HCVECs under hypoxic conditions activated the PI3K/AKT/FOXO1 axis in human macrophages via binding to CSF1R, promoting macrophage migration and M2 polarization via up-regulation of the CSF1R/PI3K/AKT/FOXO1 pathway. Human macrophages promoted the proliferation, migration, and tube formation of HCVECs in a CSF1/CSFR1-dependent manner under hypoxic conditions. CSF1/CSF1R blockade ameliorated the formation of mouse laser-induced CNV. CSF1 and CSF1R were increased in the aqueous humor of nAMD patients.ConclusionsOur results affirmed the crucial role of CSF1/CSF1R in boosting the formation of CNV and offered potential molecular targets for the treatment of nAMD.
Project description:Pancreatic cancer is the deadliest malignancy of the digestive system and is the seventh most common cause of cancer-related deaths worldwide. The incidence and mortality of pancreatic cancer continue to increase, and its 5-year survival rate remains the lowest among all cancers. N6-methyladenine (m6A) is the most abundant reversible RNA modification in various eukaryotic messenger and long noncoding RNAs and plays crucial roles in the occurrence and development of cancers. However, the role of m6A in pancreatic cancer remains unclear. The present study aimed to explore the role of m6A and its regulators in pancreatic cancer and assess its underlying molecular mechanism associated with pancreatic cancer cell proliferation, invasion, and metastasis. Reduced expression of the m6A demethylase, fat mass and obesity-associated protein (FTO), was responsible for the high levels of m6A RNA modification in pancreatic cancer. Moreover, FTO demethylated the m6A modification of praja ring finger ubiquitin ligase 2 (PJA2), thereby reducing its mRNA decay, suppressing Wnt signaling, and ultimately restraining the proliferation, invasion, and metastasis of pancreatic cancer cells. Altogether, this study describes new, potential molecular therapeutic targets for pancreatic cancer that could pave the way to improve patient outcome.
Project description:Many conditions affecting the heart, brain, and even the eyes have their origins in blood vessel pathology, underscoring the role of vascular regulation. In age-related macular degeneration (AMD), there is excessive growth of abnormal blood vessels in the eye (choroidal neovascularization), eventually leading to vision loss due to detachment of retinal pigmented epithelium. As the advanced stage of this disease involves loss of retinal pigmented epithelium, much less attention has been given to early vascular events such as endothelial dysfunction. Although current gold standard therapy using inhibitors of vascular endothelial growth factor (VEGF) have achieved initial successes, some drawbacks include the lack of long-term restoration of visual acuity, as well as a subset of the patients being refractory to existing treatment, alluding us and others to hypothesize upon VEGF-independent mechanisms. Against this backdrop, we present here a nonexhaustive review on the vascular underpinnings of AMD, implications with genetic and systemic factors, experimental models for studying choroidal neovascularization, and interestingly, on both endothelial-centric pathways and noncell autonomous mechanisms. We hope to shed light on future research directions in improving vascular function in ocular disorders.
Project description:PurposeTo determine the effect of voluntary exercise on choroidal neovascularization (CNV) in mice.MethodsAge-matched wild-type C57BL/6J mice were housed in cages equipped with or without running wheels. After four weeks of voluntary running or sedentariness, mice were subjected to laser injury to induce CNV. After surgical recovery, mice were placed back in cages with or without exercise wheels for seven days. CNV lesion volumes were measured by confocal microscopy. The effect of wheel running only in the seven days after injury was also evaluated. Macrophage abundance and cytokine expression were quantified.ResultsIn the first study, exercise-trained mice exhibited a 45% reduction in CNV volume compared to sedentary mice. In the replication study, a 32% reduction in CNV volume in exercise-trained mice was observed (P = 0.029). Combining these two studies, voluntary exercise was found to reduce CNV by 41% (P = 0.0005). Exercise-trained male and female mice had similar CNV volumes (P = 0.99). The daily running distance did not correlate with CNV lesion size. Exercise only after the laser injury without a preconditioning period did not reduce CNV size (P = 0.41). CNV lesions of exercise-trained mice also exhibited significantly lower F4/80+ macrophage staining and Vegfa and Ccl2 mRNA expression.ConclusionsThese findings provide the first experimental evidence that voluntary exercise improves CNV outcomes. These studies indicate that exercise before laser treatment is required to improve CNV outcomes.
Project description:N6-methyladenosine (m6A) acts as the most common mRNA modification in mammal cells. Fat Mass and Obesity-associated protein (FTO) is the firstly identified demethylase in the m6A modification. This research tries to discover the potential roles of FTO in the m6A modification in the hepatocellular carcinoma (HCC). FTO level was found to be up-regulated in the HCC tissue and cells. The over-expression of FTO was correlated to the poor prognosis of HCC individuals. Knockdown of FTO suppressed the proliferation and in vivo tumor growth, and induced the G0/G1 phase arrest. Mechanically, FTO triggered the demethylation of PKM2 mRNA and accelerated the translated production. Overall, this finding suggests the critical function of FTO in the HCC oncogenesis and its m6A modification.
Project description:Pathological neovascularization, a leading cause of blindness, is seen in retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration. Using a mouse model of hypoxia-driven retinal neovascularization, we find that fibroblast growth factor 21 (FGF21) administration suppresses, and FGF21 deficiency worsens, retinal neovessel growth. The protective effect of FGF21 against neovessel growth was abolished in adiponectin (APN)-deficient mice. FGF21 administration also decreased neovascular lesions in two models of neovascular age-related macular degeneration: very-low-density lipoprotein-receptor-deficient mice with retinal angiomatous proliferation and laser-induced choroidal neovascularization. FGF21 inhibited tumor necrosis α (TNF-α) expression but did not alter Vegfa expression in neovascular eyes. These data suggest that FGF21 may be a therapeutic target for pathologic vessel growth in patients with neovascular eye diseases, including retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration.
Project description:Fat mass and obesity-associated protein (FTO) is the first reported RNA N6-methyladenosine (m6A) demethylase in eukaryotic cells. m6A is considered as the most abundant mRNA internal modification, which modulates several cellular processes including alternative splicing, stability, and expression. Genome-wide association studies (GWAS) identified single-nucleotide polymorphisms (SNPs) within FTO to be associated with obesity, as well as cancer including endometrial cancer, breast cancer, pancreatic cancer, and melanoma. Since the initial classification of FTO as an m6A demethylase, various studies started to unravel a connection between FTO's demethylase activity and the susceptibility to obesity on the molecular level. FTO was found to facilitate adipogenesis, by regulating adipogenic pathways and inducing pre-adipocyte differentiation. FTO has also been investigated in tumorigenesis, where emerging studies suggest m6A and FTO levels are dysregulated in various cancers, including acute myeloid leukemia (AML), glioblastoma, cervical squamous cell carcinoma (CSCC), breast cancer, and melanoma. Here we review the molecular bases of m6A in tumorigenesis and adipogenesis while highlighting the controversial role of FTO in obesity. We provide recent findings confirming FTO's causative link to obesity and discuss novel approaches using RNA demethylase inhibitors as targeted oncotherapies. Our review aims to confirm m6A demethylation as a risk factor in obesity and provoke new research in FTO and human disorders.
Project description:IntroductionChoroidal neovascularization (CNV) in age-related macular degeneration (AMD) leads to blindness. It has been widely reported that increased intake of ω-3 long-chain polyunsaturated fatty acids (LCPUFA) diets reduce CNV. Of the three major pathways metabolizing ω-3 (and ω-6 LCPUFA), the cyclooxygenase and lipoxygenase pathways generally produce pro-angiogenic metabolites from ω-6 LCPUFA and anti-angiogenic ones from ω-3 LCPUFA. Howevehr, cytochrome P450 oxidase (CPY) 2C produces pro-angiogenic metabolites from both ω-6 and ω-3 LCPUFA. The effects of CYP2J2 products on ocular neovascularization are still unknown. Understanding how each metabolic pathway affects the protective effect of ω-3 LCPUFA on retinal neovascularization may lead to therapeutic interventions.ObjectivesTo investigate the effects of LCPUFA metabolites through CYP2J2 pathway and CYP2J2 regulation on CNV both in vivo and ex vivo.MethodsThe impact of CYP2J2 overexpression and inhibition on neovascularization in the laser-induced CNV mouse model was assessed. The plasma levels of CYP2J2 metabolites were measured by liquid chromatography and tandem mass spectroscopy. The choroidal explant sprouting assay was used to investigate the effects of CYP2J2 inhibition and specific LCPUFA CYP2J2 metabolites on angiogenesis ex vivo.ResultsCNV was exacerbated in Tie2-Cre CYP2J2-overexpressing mice and was associated with increased levels of plasma docosahexaenoic acids. Inhibiting CYP2J2 activity with flunarizine decreased CNV in both ω-6 and ω-3 LCPUFA-fed wild-type mice. In Tie2-Cre CYP2J2-overexpressing mice, flunarizine suppressed CNV by 33 % and 36 % in ω-6, ω-3 LCPUFA diets, respectively, and reduced plasma levels of CYP2J2 metabolites. The pro-angiogenic role of CYP2J2 was corroborated in the choroidal explant sprouting assay. Flunarizine attenuated ex vivo choroidal sprouting, and 19,20-EDP, a ω-3 LCPUFA CYP2J2 metabolite, increased sprouting. The combined inhibition of CYP2J2 with flunarizine and CYP2C8 with montelukast further enhanced CNV suppression via tumor necrosis factor-α suppression.ConclusionsCYP2J2 inhibition augmented the inhibitory effect of ω-3 LCPUFA on CNV. Flunarizine suppressed pathological choroidal angiogenesis, and co-treatment with montelukast inhibiting CYP2C8 further enhanced the effect. CYP2 inhibition might be a viable approach to suppress CNV in AMD.