Project description:Cryo-electron tomography (CET) is uniquely suited to obtain structural information from a wide range of biological scales, integrating and bridging knowledge from molecules to cells. In particular, CET can be used to visualise molecular structures in their native environment. Depending on the experiment, a varying degree of resolutions can be achieved, with the first near-atomic molecular structures becoming recently available. The power of CET has increased significantly in the last 5 years, in parallel with improvements in cryo-EM hardware and software that have also benefited single-particle reconstruction techniques. In this review, we cover the typical CET pipeline, starting from sample preparation, to data collection and processing, and highlight in particular the recent developments that support structural biology in situ We provide some examples that highlight the importance of structure determination of molecules embedded within their native environment, and propose future directions to improve CET performance and accessibility.
Project description:We used cryo-electron tomography in conjunction with single-particle averaging techniques to study the structures of frozen-hydrated envelope glycoprotein (Env) complexes on intact Moloney murine leukemia retrovirus particles. Cryo-electron tomography allows 3D imaging of viruses in toto at a resolution sufficient to locate individual macromolecules, and local averaging of abundant complexes substantially improves the resolution. The averaging of repetitive features in electron tomograms is hampered by a low signal-to-noise ratio and anisotropic resolution, which results from the "missing-wedge" effect. We developed an iterative 3D averaging algorithm that compensates for this effect and used it to determine the trimeric structure of Env to a resolution of 2.7 nm, at which individual domains can be resolved. Strikingly, the 3D reconstruction is shaped like a tripod in which the trimer penetrates the membrane at three distinct locations approximately 4.5 nm apart from one another. The Env reconstruction allows tentative docking of the x-ray crystal structure of the receptor-binding domain. This study thus provides 3D structural information regarding the prefusion conformation of an intact unstained retrovirus surface protein.
Project description:The combination of cryo-microscopy and electron tomographic reconstruction has allowed us to determine the structure of one of the more complex viruses, intracellular mature vaccinia virus, at a resolution of 4-6 nm. The tomographic reconstruction allows us to dissect the different structural components of the viral particle, avoiding projection artifacts derived from previous microscopic observations. A surface-rendering representation revealed brick-shaped viral particles with slightly rounded edges and dimensions of approximately 360 x 270 x 250 nm. The outer layer was consistent with a lipid membrane (5-6 nm thick), below which usually two lateral bodies were found, built up by a heterogeneous material without apparent ordering or repetitive features. The internal core presented an inner cavity with electron dense coils of presumptive DNA-protein complexes, together with areas of very low density. The core was surrounded by two layers comprising an overall thickness of approximately 18-19 nm; the inner layer was consistent with a lipid membrane. The outer layer was discontinuous, formed by a periodic palisade built by the side interaction of T-shaped protein spikes that were anchored in the lower membrane and were arranged into small hexagonal crystallites. It was possible to detect a few pore-like structures that communicated the inner side of the core with the region outside the layer built by the T-shaped spike palisade.
Project description:Centrosomes are cellular organelles that have a major role in the spatial organisation of the microtubule network. The centrosome is comprised of two centrioles that duplicate only once during the cell cycle, generating a procentriole from each mature centriole. Despite the essential roles of centrosomes, the detailed structural mechanisms involved in centriole duplication remain largely unknown. Here, we describe human procentriole assembly using cryo-electron tomography. In centrosomes, isolated from human lymphoblasts, we observed that each one of the nine microtubule triplets grows independently around a periodic central structure. The proximal end of the A-microtubule is capped by a conical structure and the B- and C-microtubules elongate bidirectionally from its wall. These observations suggest that the gamma tubulin ring complex (gamma-TuRC) has a fundamental role in procentriole formation by nucleating the A-microtubule that acts as a template for B-microtubule elongation that, in turn, supports C-microtubule growth. This study provides new insights into the initial structural events involved in procentriole assembly and establishes the basis for determining the molecular mechanisms of centriole duplication on the nanometric scale.
Project description:Developments in cryo-electron microscopy (cryo-EM) have been interwoven with the study of viruses ever since its first applications to biological systems. Following the success of single particle cryo-EM in the last decade, cryo-electron tomography (cryo-ET) is now rapidly maturing as a technology and catalysing great advancement in structural virology as its application broadens. In this review, we provide an overview of the use of cryo-ET to study viral infection biology, discussing the key workflows and strategies used in the field. We highlight the vast body of studies performed on purified viruses and virus-like particles (VLPs), as well as discussing how cryo-ET can characterise host-virus interactions and membrane fusion events. We further discuss the importance of in situ cellular imaging in revealing previously unattainable details of infection and highlight the need for validation of high-resolution findings from purified ex situ systems. We give perspectives for future developments to achieve the full potential of cryo-ET to characterise the molecular processes of viral infection.
Project description:The cell biology of Chloroflexota is poorly studied. We applied cryo-focused ion beam milling and cryo-electron tomography to study the ultrastructural organization of thermophilic Roseiflexus castenholzii and Chloroflexus aggregans, and mesophilic "Ca. Viridilinea mediisalina." These species represent the three main lineages within a group of multicellular filamentous anoxygenic phototrophic Chloroflexota bacteria belonging to the Chloroflexales order. We found surprising structural complexity in the Chloroflexales. As with filamentous cyanobacteria, cells of C. aggregans and "Ca. Viridilinea mediisalina" share the outer membrane-like layers of their intricate multilayer cell envelope. Additionally, cells of R. castenholzii and "Ca. Viridilinea mediisalina" are connected by septal channels that resemble cyanobacterial septal junctions. All three strains possess long pili anchored close to cell-to-cell junctions, a morphological feature comparable to that observed in cyanobacteria. The cytoplasm of the Chloroflexales bacteria is crowded with intracellular organelles such as different types of storage granules, membrane vesicles, chlorosomes, gas vesicles, chemoreceptor-like arrays, and cytoplasmic filaments. We observed a higher level of complexity in the mesophilic strain compared to the thermophilic strains with regards to the composition of intracellular bodies and the organization of the cell envelope. The ultrastructural details that we describe in these Chloroflexales bacteria will motivate further cell biological studies, given that the function and evolution of the many discovered morphological traits remain enigmatic in this diverse and widespread bacterial group.
Project description:Modern methods of cryo electron microscopy and tomography allow visualization of protein nanomachines in their native state at the nanometer scale. Image processing methods including sub-volume averaging applied to repeating macromolecular elements within tomograms allow exploring their structures within the native context of the cell, avoiding the need for protein isolation and purification. Today, many different data acquisition protocols and software solutions are available to researchers to determine average structures of macromolecular complexes and potentially to classify structural intermediates. Here, we list the density maps reported in the literature, and analyze each structure for the chosen instrumental settings, sample conditions, main processing steps, and obtained resolution. We present conclusions that identify factors currently limiting the resolution gained by this approach.
Project description:The Bsoft package [Heymann, J.B., Belnap, D.M., 2007. Bsoft: image processing and molecular modeling for electron microscopy. J. Struct. Biol. 157, 3-18] has been enhanced by adding utilities for processing electron tomographic (ET) data; in particular, cryo-ET data characterized by low contrast and high noise. To handle the high computational load efficiently, a workflow was developed, based on the database-like parameter handling in Bsoft, aimed at minimizing user interaction and facilitating automation. To the same end, scripting elements distribute the processing among multiple processors on the same or different computers. The resolution of a tomogram depends on the precision of projection alignment, which is usually based on pinpointing fiducial markers (electron-dense gold particles). Alignment requires accurate specification of the tilt axis, and our protocol includes a procedure for determining it to adequate accuracy. Refinement of projection alignment provides information that allows assessment of its precision, as well as projection quality control. We implemented a reciprocal space algorithm that affords an alternative to back-projection or real space algorithms for calculating tomograms. Resources are also included that allow resolution assessment by cross-validation (NLOO2D); denoising and interpretation; and the extraction, mutual alignment, and averaging of tomographic sub-volumes.
Project description:Periplasmic flagella are essential for the distinct morphology and motility of spirochetes. A flagella-specific type III secretion system (fT3SS) composed of a membrane-bound export apparatus and a cytosolic ATPase complex is responsible for the assembly of the periplasmic flagella. Here, we deployed cryo-electron tomography (cryo-ET) to visualize the fT3SS machine in the Lyme disease spirochete Borrelia burgdorferi. We show, for the first time, that the cytosolic ATPase complex is attached to the flagellar C-ring through multiple spokes to form the "spoke and hub" structure in B. burgdorferi. This structure not only strengthens structural rigidity of the round-shaped C-ring but also appears to rotate with the C-ring. Our studies provide structural insights into the unique mechanisms underlying assembly and rotation of the periplasmic flagella and may provide the basis for the development of novel therapeutic strategies against several pathogenic spirochetes.
Project description:The biological identity of nanoparticles (NPs) is established by their interactions with a wide range of biomolecules around their surfaces after exposure to biological media. Understanding the true nature of the biomolecular corona (BC) in its native state is, therefore, essential for its safe and efficient application in clinical settings. The fundamental challenge is to visualize the biomolecules within the corona and their relationship/association to the surface of the NPs. Using a synergistic application of cryo-electron microscopy, cryo-electron tomography, and three-dimensional reconstruction, we revealed the unique morphological details of the biomolecules and their distribution/association with the surface of polystyrene NPs at a nanoscale resolution. The analysis of the BC at a single NP level and its variability among NPs in the same sample, and the discovery of the presence of nonspecific biomolecules in plasma residues, enable more precise characterization of NPs, improving predictions of their safety and efficacies.