Project description:The nature of chemical bonds of ruthenium(Ru)-quinine(Q) complexes, mononuclear [Ru(trpy)(3,5-t-Bu(2)Q)(OH(2))](ClO(4))(2) (trpy = 2,2':6',2''-terpyridine, 3,5-di-tert-butyl-1,2-benzoquinone) (1), and binuclear [Ru(2)(btpyan)(3,6-di-Bu(2)Q)(2)(OH(2))](2+) (btpyan = 1,8-bis(2,2':6',2''-terpyrid-4'-yl)anthracene, 3,6-t-Bu(2)Q = 3,6-di-tert-butyl-1,2-benzoquinone) (2), has been investigated by broken-symmetry (BS) hybrid density functional (DFT) methods. BS DFT computations for the Ru complexes have elucidated that the closed-shell structure (2b) Ru(II)-Q complex is less stable than the open-shell structure (2bb) consisting of Ru(III) and semiquinone (SQ) radical fragments. These computations have also elucidated eight different electronic and spin structures of tetraradical intermediates that may be generated in the course of water splitting reaction. The Heisenberg spin Hamiltonian model for these species has been derived to elucidate six different effective exchange interactions (J) for four spin systems. Six J values have been determined using total energies of the eight (or seven) BS solutions for different spin configurations. The natural orbital analyses of these BS DFT solutions have also been performed in order to obtain natural orbitals and their occupation numbers, which are useful for the lucid understanding of the nature of chemical bonds of the Ru complexes. Implications of the computational results are discussed in relation to the proposed reaction mechanisms of water splitting reaction in artificial photosynthesis systems and the similarity between artificial and native water splitting systems.
Project description:While negative staining can provide detailed, two-dimensional images of biological structures, the potential of combining tomography with negative staining to provide three-dimensional views has yet to be fully realized. Basic requirements of a negative stain for tomography are that the density and atomic number of the stain are optimal, and that the stain does not degrade or rearrange with the intensive electron dose (~10⁶ e/nm²) needed to collect a full set of tomographic images. A commercially available, tungsten-based stain appears to satisfy these prerequisites. Comparison of the surface structure of negatively stained influenza A virus with previous structural results served to evaluate this negative stain. The combination of many projections of the same structure yielded detailed images of single proteins on the viral surface. Corresponding surface renderings are a good fit to images of the viral surface derived from cryomicroscopy as well as to the shapes of crystallized surface proteins. Negative stain tomography with the appropriate stain yields detailed images of individual molecules in their normal setting on the surface of the influenza A virus.
Project description:BackgroundThe increasing number of novel approaches for large-scale, multi-dimensional imaging of cells has created an unprecedented opportunity to analyze plant morphogenesis. However, complex image processing, including identifying specific cells and quantitating parameters, and high running cost of some image analysis softwares remains challenging. Therefore, it is essential to develop an efficient method for identifying plant complex multicellularity in raw micrographs in plants.ResultsHere, we developed a high-efficiency procedure to characterize, segment, and quantify plant multicellularity in various raw images using the open-source software packages ImageJ and SR-Tesseler. This procedure allows for the rapid, accurate, automatic quantification of cell patterns and organization at different scales, from large tissues down to the cellular level. We validated our method using different images captured from Arabidopsis thaliana roots and seeds and Populus tremula stems, including fluorescently labeled images, Micro-CT scans, and dyed sections. Finally, we determined the area, centroid coordinate, perimeter, and Feret's diameter of the cells and harvested the cell distribution patterns from Voronoï diagrams by setting the threshold at localization density, mean distance, or area.ConclusionsThis procedure can be used to determine the character and organization of multicellular plant tissues at high efficiency, including precise parameter identification and polygon-based segmentation of plant cells.
Project description:A microfluidic platform is presented for preparing negatively stained grids for use in transmission electron microscopy (EM). The microfluidic device is composed of glass etched with readily fabricated features that facilitate the extraction of the grid poststaining and maintains the integrity of the sample. Utilization of this device simultaneously reduced environmental contamination on the grids and improved the homogeneity of the heavy metal stain needed to enhance visualization of biological specimens as compared to conventionally prepared EM grids. This easy-to-use EM grid preparation device provides the basis for future developments of systems with more integrated features, which will allow for high-throughput and dynamic structural biology studies.
Project description:The reaction between Mo(O)(CHAro)(ORF6)2(PMe3) (Aro = ortho-methoxyphenyl, ORF6 = OCMe(CF3)2) and 2 equiv of LiOHMT (OHMT = O-2,6-(2,4,6-Me3C6H2)2C6H3) leads to Mo(O)(CHAro)(OHMT)2, an X-ray structure of which shows it to be a trigonal bipyramidal anti benzylidene complex in which the o-methoxy oxygen is coordinated to the metal trans to the apical oxo ligand. Addition of 1 equiv of water (in THF) to the benzylidyne complex, Mo(CArp)(OR)3(THF)2 (Arp = para-methoxyphenyl, OR = ORF6 or OC(CF3)3 (ORF9)) leads to formation of {Mo(CArp)(OR)2(μ-OH)(THF)}2(μ-THF) complexes. Addition of 1 equiv of a phosphine (L) to Mo(CArp)(ORF9)3(THF)2 in THF, followed by addition of 1 equiv of water, all at room temperature, yields Mo(O)(CHArp)(ORF9)2(L) complexes in good yields for several phosphines (e.g., PMe2Ph (69% by NMR), PMePh2 (59%), PEt3 (69%), or P( i-Pr)3 (65%)). The reaction between Mo(O)(CHArp)(ORF9)2(PEt3) and 2 equiv of LiOHMT proceeds smoothly at 90 °C in toluene to give Mo(O)(CHArp)(OHMT)2, a four-coordinate syn alkylidene complex. Mo(O)(CHArp)(OHMT)2 reacts with ethylene (1 atm in C6D6) to give (in solution) a mixture of Mo(O)(CHArp)(OHMT)2, Mo(O)(CH2)(OHMT)2, and an unsubstituted square pyramidal metallacyclobutane complex, Mo(O)(CH2CH2CH2)(OHMT)2, along with ethylene and ArpCH═CH2. Mo(O)(CHArp)(OHMT)2 also reacts with 2,3-dicarbomethoxynorbornadiene to yield syn and anti isomers of the "first-insertion" products that contain a cis C═C bond.
Project description:Rhenium(V) oxo complexes of general formula [ReO(OMe)(N^N)Cl2], where N^N = 4,7-diphenyl-1,10-phenanthroline, 1, or 3,4,7,8-tetramethyl-1,10-phenanthroline, 2, effectively kill cancer cells by triggering necroptosis, a non-apoptotic form of cell death. Both complexes evoke necrosome (RIP1-RIP3)-dependent intracellular reactive oxygen species (ROS) production and propidium iodide uptake. The complexes also induce mitochondrial membrane potential depletion, a possible downstream effect of ROS production. Apparently, 1 and 2 are the first rhenium complexes to evoke cellular events consistent with programmed necrosis in cancer cells. Furthermore, 1 and 2 display low acute toxicity in C57BL/6 mice and reasonable stability in fresh human blood.