Project description:Recent advances in single-particle cryo-electron microscopy (cryo-EM) data collection utilize beam-image shift to improve throughput. Despite implementation on 300 keV cryo-EM instruments, it remains unknown how well beam-image-shift data collection affects data quality on 200 keV instruments and the extent to which aberrations can be computationally corrected. To test this, a cryo-EM data set for aldolase was collected at 200 keV using beam-image shift and analyzed. This analysis shows that the instrument beam tilt and particle motion initially limited the resolution to 4.9 Å. After particle polishing and iterative rounds of aberration correction in RELION, a 2.8 Å resolution structure could be obtained. This analysis demonstrates that software correction of microscope aberrations can provide a significant improvement in resolution at 200 keV.
Project description:Automated data acquisition is used widely for single-particle reconstruction of three-dimensional (3D) volumes of biological complexes preserved in vitreous ice and imaged in a transmission electron microscope. Automation has become integral to this method because of the very large number of particle images required in order to overcome the typically low signal-to-noise ratio of these images. For optimal efficiency, automated data acquisition software packages typically employ some beam-image shift targeting as this method is both fast and accurate (±0.1?µm). In contrast, using only stage movement, relocation to a targeted area under low-dose conditions can only be achieved in combination with multiple iterations or long relaxation times, both reducing efficiency. Nevertheless it is well known that applying beam-image shift induces beam-tilt and with it a potential structure phase error with a phase error ?/4 the highest acceptable value. This theory has been used as an argument against beam-image shift for high resolution data collection. Nevertheless, in practice many small beam-image shift datasets have resulted in 3D reconstructions beyond the ?/4 phase error limit. To address this apparent contradiction, we performed cryo-EM single-particle reconstructions on a T20S proteasome sample using applied beam-image shifts corresponding to beam tilts from 0 to 10 mrad. To evaluate the results we compared the FSC values, and examined the water density peaks in the 3D map. We conclude that the phase error does not limit the validity of the 3D reconstruction from single-particle averaging beyond the ?/4 resolution limit.
Project description:With the advancements in instrumentation, image processing algorithms, and computational capabilities, single-particle electron cryo-microscopy (cryo-EM) has achieved nearly atomic resolution in determining the 3D structures of viruses. The virus structures play a crucial role in studying their biological function and advancing the development of antiviral vaccines and treatments. Despite the effectiveness of artificial intelligence (AI) in general image processing, its development for identifying and extracting virus particles from cryo-EM micrographs (images) has been hindered by the lack of manually labelled high-quality datasets. To fill the gap, we introduce CryoVirusDB, a labeled dataset containing the coordinates of expert-picked virus particles in cryo-EM micrographs. CryoVirusDB comprises 9,941 micrographs of 9 different viruses along with the coordinates of 339,398 labeled virus particles. It can be used to train and test AI and machine learning (e.g., deep learning) methods to accurately identify virus particles in cryo-EM micrographs for building atomic 3D structural models for viruses.
Project description:Cryo-electron microscopy (cryo-EM) is a powerful technique for determining the structures of biological macromolecular complexes. Picking single-protein particles from cryo-EM micrographs is a crucial step in reconstructing protein structures. However, the widely used template-based particle picking process is labor-intensive and time-consuming. Though machine learning and artificial intelligence (AI) based particle picking can potentially automate the process, its development is hindered by lack of large, high-quality labelled training data. To address this bottleneck, we present CryoPPP, a large, diverse, expert-curated cryo-EM image dataset for protein particle picking and analysis. It consists of labelled cryo-EM micrographs (images) of 34 representative protein datasets selected from the Electron Microscopy Public Image Archive (EMPIAR). The dataset is 2.6 terabytes and includes 9,893 high-resolution micrographs with labelled protein particle coordinates. The labelling process was rigorously validated through 2D particle class validation and 3D density map validation with the gold standard. The dataset is expected to greatly facilitate the development of both AI and classical methods for automated cryo-EM protein particle picking.
Project description:Tomographic reconstruction of cryopreserved specimens imaged in an electron microscope followed by extraction and averaging of sub-volumes has been successfully used to derive atomic models of macromolecules in their biological environment. Eliminating biochemical isolation steps required by other techniques, this method opens up the cell to in-situ structural studies. However, the need to compensate for errors in targeting introduced during mechanical navigation of the specimen significantly slows down tomographic data collection thus limiting its practical value. Here, we introduce protocols for tilt-series acquisition and processing that accelerate data collection speed by up to an order of magnitude and improve map resolution compared to existing approaches. We achieve this by using beam-image shift to multiply the number of areas imaged at each stage position, by integrating geometrical constraints during imaging to achieve high precision targeting, and by performing per-tilt astigmatic CTF estimation and data-driven exposure weighting to improve final map resolution. We validated our beam image-shift electron cryo-tomography (BISECT) approach by determining the structure of a low molecular weight target (~300 kDa) at 3.6 Å resolution where density for individual side chains is clearly resolved.
Project description:Cryo-electron microscopy (cryo-EM) is currently the most powerful technique for determining the structures of large protein complexes and assemblies. Picking single-protein particles from cryo-EM micrographs (images) is a key step in reconstructing protein structures. However, the widely used template-based particle picking process is labor-intensive and time-consuming. Though the emerging machine learning-based particle picking can potentially automate the process, its development is severely hindered by lack of large, high-quality, manually labelled training data. Here, we present CryoPPP, a large, diverse, expert-curated cryo-EM image dataset for single protein particle picking and analysis to address this bottleneck. It consists of manually labelled cryo-EM micrographs of 32 non-redundant, representative protein datasets selected from the Electron Microscopy Public Image Archive (EMPIAR). It includes 9,089 diverse, high-resolution micrographs (∼300 cryo-EM images per EMPIAR dataset) in which the coordinates of protein particles were labelled by human experts. The protein particle labelling process was rigorously validated by both 2D particle class validation and 3D density map validation with the gold standard. The dataset is expected to greatly facilitate the development of machine learning and artificial intelligence methods for automated cryo-EM protein particle picking. The dataset and data processing scripts are available at https://github.com/BioinfoMachineLearning/cryoppp.