Project description:The thyroglobulin (TG) protein is essential to thyroid hormone synthesis, plays a vital role in the regulation of metabolism, development and growth and serves as intraglandular iodine storage. Its architecture is conserved among vertebrates. Synthesis of triiodothyronine (T3) and thyroxine (T4) hormones depends on the conformation, iodination and post-translational modification of TG. Although structural information is available on recombinant and deglycosylated endogenous human thyroglobulin (hTG) from patients with goiters, the structure of native, fully glycosylated hTG remained unknown. Here, we present the cryo-electron microscopy structure of native and fully glycosylated hTG from healthy thyroid glands to 3.2 Å resolution. The structure provides detailed information on hormonogenic and glycosylation sites. We employ liquid chromatography-mass spectrometry (LC-MS) to validate these findings as well as other post-translational modifications and proteolytic cleavage sites. Our results offer insights into thyroid hormonogenesis of native hTG and provide a fundamental understanding of clinically relevant mutations.
Project description:Found across all kingdoms of life, 2-keto acid dehydrogenase complexes possess prominent metabolic roles and form major regulatory sites. Although their component structures are known, their higher-order organization is highly heterogeneous, not only across species or tissues but also even within a single cell. Here, we report a cryo-EM structure of the fully active Chaetomium thermophilum pyruvate dehydrogenase complex (PDHc) core scaffold at 3.85 Å resolution (FSC = 0.143) from native cell extracts. By combining cryo-EM with macromolecular docking and molecular dynamics simulations, we resolve all PDHc core scaffold interfaces and dissect the residing transacetylase reaction. Electrostatics attract the lipoyl domain to the transacetylase active site and stabilize the coenzyme A, while apolar interactions position the lipoate in its binding cleft. Our results have direct implications on the structural determinants of the transacetylase reaction and the role of flexible regions in the context of the overall 10 MDa PDHc metabolon architecture.
Project description:We provide detailed datasets from our analysis of proteins that are identified in human liver, lung, kidney and intestine microsomes by MS-based proteomics. Also included is a set of CYP450 enzymes and microsomal glutathione-S-transferase (MGSTs) activities in human liver microsomes. The data presented in this paper support the research article "Targeted label-free approach for quantification of epoxide hydrolase and glutathione transferases in microsomes" (Song et al., 2015) [1]. We expect that the data will contribute to the study of metabolism enzymes.
Project description:The Tthyroglobulin (Tg) protein is the essential fundament toto thyroid hormone synthesis, a key player playing a vital role in the regulation of metabolism, development and growth and serving as intraglandular iodine storage. Its structure is conserved among vertebrates. Tg is delivered through the secretory pathway of the thyroid follicular unit to the central colloid depository, where it is iodinated at specific tyrosine sites to form mono- or diiodotyrosine, which combine to produce triiodothyronine (T3) and thyroxine (T4), respectively. Synthesis of these hormones depends on the precise 3D structure, iodination capacity and post-translational modification of Tg. The Tg structure is overall conserved among vertebrates and , which and structural information has long been remained unknown missing despite decades of research until recently structural information has been made available on human thyroglobulin (hTg) originating from recombinant hTg and endogenous hTg from patients with goitres. Here, we present the cryo-electron microscopy structure of native and fully functional human thyroglobulin (hTg) originating from healthy human thyroid glands, to a global resolution of 3.2 Å. We used LC-MS experiments to The structure provides detailed information on the location of the hTg hormonogenic sites by revealing native iodination, and reveals the position as well as the role of many of its glycosylation sites and other post-translational modifications. Our results offer structural insights into thyroid hormonogenesis of natively functional hTg and provide a fundamental understanding of clinically relevant hTg mutations, which can improve treatment of thyroid diseases.
Project description:Assembly of extracellular filaments and matrices mediating fundamental biological processes such as morphogenesis, hearing, fertilization, and antibacterial defense is driven by a ubiquitous polymerization module known as zona pellucida (ZP) "domain". Despite the conservation of this element from hydra to humans, no detailed information is available on the filamentous conformation of any ZP module protein. Here, we report a cryo-electron microscopy study of uromodulin (UMOD)/Tamm-Horsfall protein, the most abundant protein in human urine and an archetypal ZP module-containing molecule, in its mature homopolymeric state. UMOD forms a one-start helix with an unprecedented 180-degree twist between subunits enfolded by interdomain linkers that have completely reorganized as a result of propeptide dissociation. Lateral interaction between filaments in the urine generates sheets exposing a checkerboard of binding sites to capture uropathogenic bacteria, and UMOD-based models of heteromeric vertebrate egg coat filaments identify a common sperm-binding region at the interface between subunits.