Project description:3D cell cultures, in particular organoids, are emerging models in the investigation of healthy or diseased tissues. Understanding the complex cellular sociology in organoids requires integration of imaging modalities across spatial and temporal scales. We present a multi-scale imaging approach that traverses millimeter-scale live-cell light microscopy to nanometer-scale volume electron microscopy by performing 3D cell cultures in a single carrier that is amenable to all imaging steps. This allows for following organoids' growth, probing their morphology with fluorescent markers, identifying areas of interest, and analyzing their 3D ultrastructure. We demonstrate this workflow on mouse and human 3D cultures and use automated image segmentation to annotate and quantitatively analyze subcellular structures in patient-derived colorectal cancer organoids. Our analyses identify local organization of diffraction-limited cell junctions in compact and polarized epithelia. The continuum-resolution imaging pipeline is thus suited to fostering basic and translational organoid research by simultaneously exploiting the advantages of light and electron microscopy.
Project description:We report methodological advances that extend the current capabilities of ion-abrasion scanning electron microscopy (IA-SEM), also known as focused ion beam scanning electron microscopy, a newly emerging technology for high resolution imaging of large biological specimens in 3D. We establish protocols that enable the routine generation of 3D image stacks of entire plastic-embedded mammalian cells by IA-SEM at resolutions of ∼10-20nm at high contrast and with minimal artifacts from the focused ion beam. We build on these advances by describing a detailed approach for carrying out correlative live confocal microscopy and IA-SEM on the same cells. Finally, we demonstrate that by combining correlative imaging with newly developed tools for automated image processing, small 100nm-sized entities such as HIV-1 or gold beads can be localized in SEM image stacks of whole mammalian cells. We anticipate that these methods will add to the arsenal of tools available for investigating mechanisms underlying host-pathogen interactions, and more generally, the 3D subcellular architecture of mammalian cells and tissues.
Project description:SignificanceHigh-speed 3D imaging methods have been playing crucial roles in many biological discoveries.AimWe present a hybrid light-field imaging system and image processing algorithm that can visualize high-speed biological events.ApproachThe hybrid light-field imaging system uses the selective plane optical illumination, which simultaneously records a high-resolution 2D image and a low-resolution 4D light-field image. The high-resolution 4D light-field image is obtained by applying the hybrid algorithm derived from the deconvolution and phase retrieval methods.ResultsHigh-resolution 3D imaging at a speed of 100-s volumes per second over an imaging field of 250 × 250 × 80 μm3 in the x, y, and z axis, respectively, is achieved with a 2.5 times enhancement in lateral resolution over the entire imaging field compared with standard light-field systems. In comparison to the deconvolution algorithm, the hybrid algorithm addresses the artifact issue at the focal plane and reduces the computation time by a factor of 4.ConclusionsThe new hybrid light-field imaging method realizes high-resolution and ultrafast 3D imaging with a compact setup and simple algorithm, which may help discover important applications in biophotonics to visualize high-speed biological events.
Project description:The imaging of intracellular pathogens inside host cells is complicated by the low resolution and sensitivity of fluorescence microscopy and by the lack of ultrastructural information to visualize the pathogens. Herein, we present a new method to visualize these pathogens during infection that circumvents these problems: by using a metabolic hijacking approach to bioorthogonally label the intracellular pathogen Salmonella Typhimurium and by using these bioorthogonal groups to introduce fluorophores compatible with stochastic optical reconstruction microscopy (STORM) and placing this in a correlative light electron microscopy (CLEM) workflow, the pathogen can be imaged within its host cell context Typhimurium with a resolution of 20?nm. This STORM-CLEM approach thus presents a new approach to understand these pathogens during infection.
Project description:BackgroundIn cell biology, the study of proteins and organelles requires the combination of different imaging approaches, from live recordings with light microscopy (LM) to electron microscopy (EM).MethodologyTo correlate dynamic events in adherent cells with both ultrastructural and 3D information, we developed a method for cultured cells that combines confocal time-lapse images of GFP-tagged proteins with electron microscopy. With laser micro-patterned culture substrate, we created coordinates that were conserved at every step of the sample preparation and visualization processes. Specifically designed for cryo-fixation, this method allowed a fast freezing of dynamic events within seconds and their ultrastructural characterization. We provide examples of the dynamic oligomerization of GFP-tagged myotubularin (MTM1) phosphoinositides phosphatase induced by osmotic stress, and of the ultrastructure of membrane tubules dependent on amphiphysin 2 (BIN1) expression.ConclusionAccessible and versatile, we show that this approach is efficient to routinely correlate functional and dynamic LM with high resolution morphology by EM, with immuno-EM labeling, with 3D reconstruction using serial immuno-EM or tomography, and with scanning-EM.
Project description:Volume electron microscopy (EM) of biological systems has grown exponentially in recent years due to innovative large-scale imaging approaches. As a standalone imaging method, however, large-scale EM typically has two major limitations: slow rates of acquisition and the difficulty to provide targeted biological information. We developed a 3D image acquisition and reconstruction pipeline that overcomes both of these limitations by using a widefield fluorescence microscope integrated inside of a scanning electron microscope. The workflow consists of acquiring large field of view fluorescence microscopy (FM) images, which guide to regions of interest for successive EM (integrated correlative light and electron microscopy). High precision EM-FM overlay is achieved using cathodoluminescent markers. We conduct a proof-of-concept of our integrated workflow on immunolabelled serial sections of tissues. Acquisitions are limited to regions containing biological targets, expediting total acquisition times and reducing the burden of excess data by tens or hundreds of GBs.
Project description:Various biological behaviors can only be observed in 3D at high speed over the long term with low phototoxicity. Light-field microscopy (LFM) provides an elegant compact solution to record 3D information in a tomographic manner simultaneously, which can facilitate high photon efficiency. However, LFM still suffers from the missing-cone problem, leading to degraded axial resolution and ringing effects after deconvolution. Here, we propose a mirror-enhanced scanning LFM (MiSLFM) to achieve long-term high-speed 3D imaging at super-resolved axial resolution with a single objective, by fully exploiting the extended depth of field of LFM with a tilted mirror placed below samples. To establish the unique capabilities of MiSLFM, we performed extensive experiments, we observed various organelle interactions and intercellular interactions in different types of photosensitive cells under extremely low light conditions. Moreover, we demonstrated that superior axial resolution facilitates more robust blood cell tracking in zebrafish larvae at high speed.
Project description:Visualizing diverse anatomical and functional traits that span many spatial scales with high spatio-temporal resolution provides insights into the fundamentals of living organisms. Light-field microscopy (LFM) has recently emerged as a scanning-free, scalable method that allows for high-speed, volumetric functional brain imaging. Given those promising applications at the tissue level, at its other extreme, this highly-scalable approach holds great potential for observing structures and dynamics in single-cell specimens. However, the challenge remains for current LFM to achieve a subcellular level, near-diffraction-limited 3D spatial resolution. Here, we report high-resolution LFM (HR-LFM) for live-cell imaging with a resolution of 300-700 nm in all three dimensions, an imaging depth of several micrometers, and a volume acquisition time of milliseconds. We demonstrate the technique by imaging various cellular dynamics and structures and tracking single particles. The method may advance LFM as a particularly useful tool for understanding biological systems at multiple spatio-temporal levels.
Project description:Volumetric interrogation of the organization and processes of intracellular organelles and molecules in cellular systems with a high spatiotemporal resolution is essential for understanding cell physiology, development, and pathology. Here, we report high-resolution Fourier light-field microscopy (HR-FLFM) for fast and volumetric live-cell imaging. HR-FLFM transforms conventional cell microscopy and enables exploration of less accessible spatiotemporal-limiting regimes for single-cell studies. The results present a near-diffraction-limited resolution in all three dimensions, a five-fold extended focal depth to several micrometers, and a scanning-free volume acquisition time up to milliseconds. The system demonstrates instrumentation accessibility, low photo damage for continuous observation, and high compatibility with general cell assays. We anticipate HR-FLFM to offer a promising methodological pathway for investigating a wide range of intracellular processes and functions with exquisite spatiotemporal contextual details.
Project description:Correlative light/electron microscopy (CLEM) allows the simultaneous observation of a given subcellular structure by fluorescence light microscopy (FLM) and electron microscopy. The use of this approach is becoming increasingly frequent in cell biology. In this study, we report on a new high data output CLEM method based on the use of cryosections. We successfully applied the method to analyze the structure of rough and smooth Russell bodies used as model systems. The major advantages of our method are (i) the possibility to correlate several hundreds of events at the same time, (ii) the possibility to perform three-dimensional (3D) correlation, (iii) the possibility to immunolabel both endogenous and recombinantly expressed proteins at the same time and (iv) the possibility to combine the high data analysis capability of FLM with the high precision-accuracy of transmission electron microscopy in a CLEM hybrid morphometry analysis. We have identified and optimized critical steps in sample preparation, defined routines for sample analysis and retracing of regions of interest, developed software for semi/fully automatic 3D reconstruction and defined preliminary conditions for an hybrid light/electron microscopy morphometry approach.