Project description:Nuclear import of RNA polymerase II (Pol II) involves the conserved factor RPAP2. Here we report the cryo-electron microscopy (cryo-EM) structure of mammalian Pol II in complex with human RPAP2 at 2.8 Å resolution. The structure shows that RPAP2 binds between the jaw domains of the polymerase subunits RPB1 and RPB5. RPAP2 is incompatible with binding of downstream DNA during transcription and is displaced upon formation of a transcription pre-initiation complex.
Project description:Automatic single particle picking is a critical step in the data processing pipeline of cryo-electron microscopy structure reconstruction. In recent years, several deep learning-based algorithms have been developed, demonstrating their potential to solve this challenge. However, current methods highly depend on manually labeled training data, which is labor-intensive and prone to biases especially for high-noise and low-contrast micrographs, resulting in suboptimal precision and recall. To address these problems, we propose UPicker, a semi-supervised transformer-based particle-picking method with a two-stage training process: unsupervised pretraining and supervised fine-tuning. During the unsupervised pretraining, an Adaptive Laplacian of Gaussian region proposal generator is proposed to obtain pseudo-labels from unlabeled data for initial feature learning. For the supervised fine-tuning, UPicker only needs a small amount of labeled data to achieve high accuracy in particle picking. To further enhance model performance, UPicker employs a contrastive denoising training strategy to reduce redundant detections and accelerate convergence, along with a hybrid data augmentation strategy to deal with limited labeled data. Comprehensive experiments on both simulated and experimental datasets demonstrate that UPicker outperforms state-of-the-art particle-picking methods in terms of accuracy and robustness while requiring fewer labeled data than other transformer-based models. Furthermore, ablation studies demonstrate the effectiveness and necessity of each component of UPicker. The source code and data are available at https://github.com/JachyLikeCoding/UPicker.
Project description:Cryo-electron microscopy (cryo-EM) is a powerful technique for determining the structures of large protein complexes. Picking single protein particles from cryo-EM micrographs (images) is a crucial step in reconstructing protein structures from them. However, the widely used template-based particle picking process requires some manual particle picking and is labor-intensive and time-consuming. Though machine learning and artificial intelligence (AI) can potentially automate particle picking, the current AI methods pick particles with low precision or low recall. The erroneously picked particles can severely reduce the quality of reconstructed protein structures, especially for the micrographs with low signal-to-noise (SNR) ratios. To address these shortcomings, we devised CryoTransformer based on transformers, residual networks, and image processing techniques to accurately pick protein particles from cryo-EM micrographs. CryoTransformer was trained and tested on the largest labelled cryo-EM protein particle dataset - CryoPPP. It outperforms the current state-of-the-art machine learning methods of particle picking in terms of the resolution of 3D density maps reconstructed from the picked particles as well as F1-score and is poised to facilitate the automation of the cryo-EM protein particle picking.
Project description:Nipah virus, a member of the Paramyxoviridae family, is a highly pathogenic nonsegmented, negative-sense RNA virus (nsNSV) which causes severe neurological and respiratory illnesses in humans. There are no available drugs or vaccines to combat this virus. A complex of large polymerase protein (L) and phosphoprotein (P) of Nipah virus supports replication and transcription and affords a target for antiviral drug development. Structural information required for drug development is lacking. Here we report the 2.9-angstrom cryo-electron microscopy structure of the Nipah virus polymerase-phosphoprotein complex. The structure identifies conserved amino acids likely important for recognition of template RNA by nsNSVs and reveals the locations of mutation-prone sites among Nipah virus strains, which may facilitate the development of therapeutic agents against Nipah virus by targeting regions unaffected by these mutation sites.
Project description:Mechanistic target of rapamycin (mTOR) complex 2 (mTORC2) plays an essential role in regulating cell proliferation through phosphorylating AGC protein kinase family members, including AKT, PKC and SGK1. The functional core complex consists of mTOR, mLST8, and two mTORC2-specific components, Rictor and mSin1. Here we investigated the intermolecular interactions within mTORC2 complex and determined its cryo-electron microscopy structure at 4.9 Å resolution. The structure reveals a hollow rhombohedral fold with a 2-fold symmetry. The dimerized mTOR serves as a scaffold for the complex assembly. The N-terminal half of Rictor is composed of helical repeat clusters and binds to mTOR through multiple contacts. mSin1 is located close to the FRB domain and catalytic cavity of mTOR. Rictor and mSin1 together generate steric hindrance to inhibit binding of FKBP12-rapamycin to mTOR, revealing the mechanism for rapamycin insensitivity of mTORC2. The mTOR dimer in mTORC2 shows more compact conformation than that of mTORC1 (rapamycin sensitive), which might result from the interaction between mTOR and Rictor-mSin1. Structural comparison shows that binding of Rictor and Raptor (mTORC1-specific component) to mTOR is mutually exclusive. Our study provides a basis for understanding the assembly of mTORC2 and a framework to further characterize the regulatory mechanism of mTORC2 pathway.
Project description:ATR (ataxia telangiectasia-mutated and Rad3-related) protein kinase and ATRIP (ATR-interacting protein) form a complex and play a critical role in response to replication stress and DNA damage. Here, we determined the cryo-electron microscopy (EM) structure of the human ATR-ATRIP complex at 4.7 Å resolution and built an atomic model of the C-terminal catalytic core of ATR (residues 1 521-2 644) at 3.9 Å resolution. The complex adopts a hollow "heart" shape, consisting of two ATR monomers in distinct conformations. The EM map for ATRIP reveals 14 HEAT repeats in an extended "S" shape. The conformational flexibility of ATR allows ATRIP to properly lock the N-termini of the two ATR monomers to favor ATR-ATRIP complex formation and functional diversity. The isolated "head-head" and "tail-tail" each adopts a pseudo 2-fold symmetry. The catalytic pockets face outward and substrate access is not restricted by inhibitory elements. Our studies provide a structural basis for understanding the assembly of the ATR-ATRIP complex and a framework for characterizing ATR-mediated DNA repair pathways.
Project description:RNA polymerase I (Pol I) specifically synthesizes ribosomal RNA. Pol I upregulation is linked to cancer, while mutations in the Pol I machinery lead to developmental disorders. Here we report the cryo-EM structure of elongating human Pol I at 2.7 Å resolution. In the exit tunnel, we observe a double-stranded RNA helix that may support Pol I processivity. Our structure confirms that human Pol I consists of 13 subunits with only one subunit forming the Pol I stalk. Additionally, the structure of human Pol I in complex with the initiation factor RRN3 at 3.1 Å resolution reveals stalk flipping upon RRN3 binding. We also observe an inactivated state of human Pol I bound to an open DNA scaffold at 3.3 Å resolution. Lastly, the high-resolution structure of human Pol I allows mapping of disease-related mutations that can aid understanding of disease etiology.